K-theoretic Gromov-Witten Invariants of Lines in Homogeneous Spaces

被引:5
|
作者
Li, Changzheng [1 ]
Mihalcea, Leonardo C. [2 ]
机构
[1] Univ Tokyo, Kavli Inst Phys & Math Universe Kavli IPMU, Todai Inst Adv Study, Kashiwa, Chiba 2778583, Japan
[2] Virginia Tech, Dept Math, Blacksburg, VA 24061 USA
关键词
QUANTUM COHOMOLOGY; POSITIVITY; GEOMETRY;
D O I
10.1093/imrn/rnt090
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X = G/P be a homogeneous space and epsilon(k) the homology class of a simple coroot. For almost all X, the variety Z(k)(X) of degree epsilon(k) pointed lines in X is known to be homogeneous. For these X, we show that the 3-point, genus 0, equivariant K-theoretic Gromov-Witten invariants of lines of degree epsilon(k) equal quantities obtained in the (ordinary) equivariant K-theory of Z(k)(X). We apply this to compute the Schubert structure constants N-u,N-vw,epsilon(k) in the equivariant quantum K-theory ring of X. Using geometry of spaces of lines through Schubert or Richardson varieties we prove vanishing and positivity properties of N-u,v(w,epsilon k). This generalizes many results from K-theory and quantum cohomology of X and gives new identities among the structure constants in the equivariant K-theory of X.
引用
收藏
页码:4625 / 4664
页数:40
相关论文
共 50 条
  • [41] OPEN GROMOV-WITTEN INVARIANTS, MIRROR MAPS, AND SEIDEL REPRESENTATIONS FOR TORIC MANIFOLDS
    Chan, Kwokwai
    Lau, Siu-Cheong
    Leung, Naichung Conan
    Tseng, Hsian-Hua
    DUKE MATHEMATICAL JOURNAL, 2017, 166 (08) : 1405 - 1462
  • [42] Orbifold Gromov-Witten Invariants of Weighted Blow-up at Smooth Points
    He, Wei Qiang
    Hu, Jian Xun
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2015, 31 (05) : 825 - 846
  • [43] On D.!Peterson's comparison formula for Gromov-Witten invariants of G/P
    Woodward, CT
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (06) : 1601 - 1609
  • [44] Open Gromov-Witten invariants and mirror maps for semi-Fano toric manifolds
    Chan, Kwokwai
    Lau, Siu-Cheong
    Leung, Naichung Conan
    Tseng, Hsian-Hua
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2020, 16 (03) : 675 - 720
  • [45] A uniqueness theorem for Frobenius manifolds and Gromov-Witten theory for orbifold projective lines
    Ishibashi, Yoshihisa
    Shiraishi, Yuuki
    Takahashi, Atsushi
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2015, 702 : 143 - 171
  • [46] Cylindric Hecke Characters and Gromov-Witten Invariants via the Asymmetric Six-Vertex Model
    Korff, Christian
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2021, 381 (02) : 591 - 640
  • [47] RATIONALITY OF SOME GROMOV-WITTEN VARIETIES AND APPLICATION TO QUANTUM K-THEORY
    Chaput, P. -E.
    Perrin, N.
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2011, 13 (01) : 67 - 90
  • [48] COMPUTING CERTAIN GROMOV-WITTEN INVARIANTS OF THE CREPANT RESOLUTION OF P(1,3,4,4)
    Boissiere, Samuel
    Mann, Etienne
    Perroni, Fabio
    NAGOYA MATHEMATICAL JOURNAL, 2011, 201 : 1 - 22
  • [49] Hirota Quadratic Equations for the Gromov-Witten invariants of P1n-2,2,2
    Cheng, Jipeng
    Milanov, Todor
    ADVANCES IN MATHEMATICS, 2021, 388
  • [50] ON FROBENIUS MANIFOLDS FROM GROMOV-WITTEN THEORY OF ORBIFOLD PROJECTIVE LINES WITH r ORBIFOLD POINTS
    Shiraishi, Yuuki
    TOHOKU MATHEMATICAL JOURNAL, 2018, 70 (01) : 17 - 37