K-theoretic Gromov-Witten Invariants of Lines in Homogeneous Spaces

被引:5
作者
Li, Changzheng [1 ]
Mihalcea, Leonardo C. [2 ]
机构
[1] Univ Tokyo, Kavli Inst Phys & Math Universe Kavli IPMU, Todai Inst Adv Study, Kashiwa, Chiba 2778583, Japan
[2] Virginia Tech, Dept Math, Blacksburg, VA 24061 USA
关键词
QUANTUM COHOMOLOGY; POSITIVITY; GEOMETRY;
D O I
10.1093/imrn/rnt090
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X = G/P be a homogeneous space and epsilon(k) the homology class of a simple coroot. For almost all X, the variety Z(k)(X) of degree epsilon(k) pointed lines in X is known to be homogeneous. For these X, we show that the 3-point, genus 0, equivariant K-theoretic Gromov-Witten invariants of lines of degree epsilon(k) equal quantities obtained in the (ordinary) equivariant K-theory of Z(k)(X). We apply this to compute the Schubert structure constants N-u,N-vw,epsilon(k) in the equivariant quantum K-theory ring of X. Using geometry of spaces of lines through Schubert or Richardson varieties we prove vanishing and positivity properties of N-u,v(w,epsilon k). This generalizes many results from K-theory and quantum cohomology of X and gives new identities among the structure constants in the equivariant K-theory of X.
引用
收藏
页码:4625 / 4664
页数:40
相关论文
共 45 条
[1]   Positivity and Kleiman transversality in equivariant K-theory of homogeneous spaces [J].
Anderson, Dave ;
Griffeth, Stephen ;
Miller, Ezra .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2011, 13 (01) :57-84
[2]  
[Anonymous], 2006, OXFORD MATH MONOGR
[3]   SINGULARITIES OF GENERALIZED RICHARDSON VARIETIES [J].
Billey, Sara ;
Coskun, Izzet .
COMMUNICATIONS IN ALGEBRA, 2012, 40 (04) :1466-1495
[4]  
Brion M, 2005, TRENDS MATH, P33, DOI 10.1007/3-7643-7342-3_2
[5]   Positivity in the Grothendieck group of complex flag varieties [J].
Brion, M .
JOURNAL OF ALGEBRA, 2002, 258 (01) :137-159
[6]  
BRION M., 2005, PROGR MATH, V231
[7]  
Buch A., 2010, ANN ECOLE NORMALE SU
[8]  
Buch A. S., CURVE NEIGHBORHOODS
[9]   QUANTUM K-THEORY OF GRASSMANNIANS [J].
Buch, Anders S. ;
Mihalcea, Leonardo C. .
DUKE MATHEMATICAL JOURNAL, 2011, 156 (03) :501-538
[10]   Quantum Pieri rules for isotropic Grassmannians [J].
Buch, Anders Skovsted ;
Kresch, Andrew ;
Tamvakis, Harry .
INVENTIONES MATHEMATICAE, 2009, 178 (02) :345-405