K-theoretic Gromov-Witten Invariants of Lines in Homogeneous Spaces

被引:5
|
作者
Li, Changzheng [1 ]
Mihalcea, Leonardo C. [2 ]
机构
[1] Univ Tokyo, Kavli Inst Phys & Math Universe Kavli IPMU, Todai Inst Adv Study, Kashiwa, Chiba 2778583, Japan
[2] Virginia Tech, Dept Math, Blacksburg, VA 24061 USA
关键词
QUANTUM COHOMOLOGY; POSITIVITY; GEOMETRY;
D O I
10.1093/imrn/rnt090
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X = G/P be a homogeneous space and epsilon(k) the homology class of a simple coroot. For almost all X, the variety Z(k)(X) of degree epsilon(k) pointed lines in X is known to be homogeneous. For these X, we show that the 3-point, genus 0, equivariant K-theoretic Gromov-Witten invariants of lines of degree epsilon(k) equal quantities obtained in the (ordinary) equivariant K-theory of Z(k)(X). We apply this to compute the Schubert structure constants N-u,N-vw,epsilon(k) in the equivariant quantum K-theory ring of X. Using geometry of spaces of lines through Schubert or Richardson varieties we prove vanishing and positivity properties of N-u,v(w,epsilon k). This generalizes many results from K-theory and quantum cohomology of X and gives new identities among the structure constants in the equivariant K-theory of X.
引用
收藏
页码:4625 / 4664
页数:40
相关论文
共 50 条
  • [1] K-theoretic Gromov-Witten invariants of line degrees on flag varieties
    Buch, Anders S.
    Chen, Linda
    Xu, Weihong
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2024, 39 (33):
  • [2] LOGARITHMIC GROMOV-WITTEN INVARIANTS
    Gross, Mark
    Siebert, Bernd
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 26 (02) : 451 - 510
  • [3] Gromov-Witten invariants on Grassmannians
    Buch, AS
    Kresch, A
    Tamvakis, H
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 16 (04) : 901 - 915
  • [4] GROMOV-WITTEN INVARIANTS FOR G/B AND PONTRYAGIN PRODUCT FOR ΩK
    Leung, Naichung Conan
    Li, Changzheng
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 364 (05) : 2567 - 2599
  • [5] Gromov-Witten invariants and localization
    Morrison, David R.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (44)
  • [6] Decomposition of degenerate Gromov-Witten invariants
    Abramovich, Dan
    Chen, Qile
    Gross, Mark
    Siebert, Bernd
    COMPOSITIO MATHEMATICA, 2020, 156 (10) : 2020 - 2075
  • [7] Tropical descendant Gromov-Witten invariants
    Markwig, Hannah
    Rau, Johannes
    MANUSCRIPTA MATHEMATICA, 2009, 129 (03) : 293 - 335
  • [8] Gromov-Witten invariants and quantum cohomology
    Mukherjee, Amiya
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2006, 116 (04): : 459 - 475
  • [9] Gromov-Witten invariants and quantum cohomology
    Amiya Mukherjee
    Proceedings of the Indian Academy of Sciences - Mathematical Sciences, 2006, 116 : 459 - 475
  • [10] Gromov-Witten invariants of bielliptic surfaces
    Blomme, Thomas
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2025, 111 (02):