ERECTA, salicylic acid, abscisic acid, and jasmonic acid modulate quantitative disease resistance of Arabidopsis thaliana to Verticillium longisporum

被引:52
|
作者
Haeffner, Eva [1 ]
Karlovsky, Petr [2 ]
Splivallo, Richard [2 ]
Traczewska, Anna [1 ]
Diederichsen, Elke [1 ]
机构
[1] Free Univ Berlin, Fachbereich Biol, Inst Biol, Dahlem Ctr Plant Sci, D-14195 Berlin, Germany
[2] Univ Gottingen, Dept Crop Sci, Mol Phytopathol & Mycotoxin Res Sect, D-37077 Gottingen, Germany
来源
BMC PLANT BIOLOGY | 2014年 / 14卷
关键词
Arabidopsis thaliana; Verticillium longisporum; QDR; RIL; NIL; QTL; Erecta; ABA; JA; SA; HETEROTRIMERIC G-PROTEIN; RECEPTOR-LIKE KINASE; RAPE BRASSICA-NAPUS; SYSTEMIC SPREAD; TRAIT LOCI; SUSCEPTIBILITY; IDENTIFICATION; DEFENSE; TOMATO; GENE;
D O I
10.1186/1471-2229-14-85
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Background: Verticillium longisporum is a soil-borne vascular pathogen infecting cruciferous hosts such as oilseed rape. Quantitative disease resistance (QDR) is the major control means, but its molecular basis is poorly understood so far. Quantitative trait locus (QTL) mapping was performed using a new (BurxLer) recombinant inbred line (RIL) population of Arabidopsis thaliana. Phytohormone measurements and analyses in defined mutants and near-isogenic lines (NILs) were used to identify genes and signalling pathways that underlie different resistance QTL. Results: QTL for resistance to V. longisporum-induced stunting, systemic colonization by the fungus and for V. longisporum-induced chlorosis were identified. Stunting resistance QTL were contributed by both parents. The strongest stunting resistance QTL was shown to be identical with Erecta. A functional Erecta pathway, which was present in Bur, conferred partial resistance to V. longisporum-induced stunting. Bur showed severe stunting susceptibility in winter. Three stunting resistance QTL of Ler origin, two co-localising with wall-associated kinase-like (Wakl)-genes, were detected in winter. Furthermore, Bur showed a much stronger induction of salicylic acid ( SA) by V. longisporum than Ler. Systemic colonization was controlled independently of stunting. The vec1 QTL on chromosome 2 had the strongest effect on systemic colonization. The same chromosomal region controlled the level of abscisic acid (ABA) and jasmonic acid (JA) in response to V. longisporum: The level of ABA was higher in colonization-susceptible Ler than in colonization-resistant Bur after V. longisporum infection. JA was down-regulated in Bur after infection, but not in Ler. These differences were also demonstrated in NILs, varying only in the region containing vec1. All phytohormone responses were shown to be independent of Erecta. Conclusions: Signalling systems with a hitherto unknown role in the QDR of A. thaliana against V. longisporum were identified: Erecta mediated resistance against V. longisporum-induced stunting. Independent of Erecta, stunting was caused in a light-dependent manner with possible participation of SA and Wakl genes. ABA and JA showed a genotype-specific response that corresponded with systemic colonization by the fungus. Understanding the biological basis of phenotypic variation in A. thaliana with respect to V. longisporum resistance will provide new approaches for implementing durable resistance in cruciferous crops.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] ERECTA, salicylic acid, abscisic acid, and jasmonic acid modulate quantitative disease resistance of Arabidopsis thaliana to Verticillium longisporum
    Eva Häffner
    Petr Karlovsky
    Richard Splivallo
    Anna Traczewska
    Elke Diederichsen
    BMC Plant Biology, 14
  • [2] Strigolactones Modulate Salicylic Acid-Mediated Disease Resistance in Arabidopsis thaliana
    Kusajima, Miyuki
    Fujita, Moeka
    Soudthedlath, Khamsalath
    Nakamura, Hidemitsu
    Yoneyama, Koichi
    Nomura, Takahito
    Akiyama, Kohki
    Maruyama-Nakashita, Akiko
    Asami, Tadao
    Nakashita, Hideo
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (09)
  • [3] Salicylic acid inhibits jasmonic acid-induced resistance of Arabidopsis thaliana to Spodoptera exigua
    Cipollini, D
    Enright, S
    Traw, MB
    Bergelson, J
    MOLECULAR ECOLOGY, 2004, 13 (06) : 1643 - 1653
  • [4] Effects of Jasmonic Acid, Ethylene, and Salicylic Acid Signaling on the Rhizosphere Bacterial Community of Arabidopsis thaliana
    Doornbos, Rogier F.
    Geraats, Bart P. J.
    Kuramae, Eiko E.
    Van Loon, L. C.
    Bakker, Peter A. H. M.
    MOLECULAR PLANT-MICROBE INTERACTIONS, 2011, 24 (04) : 395 - 407
  • [5] The effects of salicylic acid and jasmonic acid mediated defense on the natural bacterial community of Arabidopsis thaliana
    Kniskern, J.
    Traw, M. B.
    Bergelson, J.
    PHYTOPATHOLOGY, 2006, 96 (06) : S149 - S149
  • [6] Salicylic acid and salicylic acid glucoside in xylem sap of Brassica napus infected with Verticillium longisporum
    Astrid Ratzinger
    Nadine Riediger
    Andreas von Tiedemann
    Petr Karlovsky
    Journal of Plant Research, 2009, 122 : 571 - 579
  • [7] Salicylic acid and salicylic acid glucoside in xylem sap of Brassica napus infected with Verticillium longisporum
    Ratzinger, Astrid
    Riediger, Nadine
    von Tiedemann, Andreas
    Karlovsky, Petr
    JOURNAL OF PLANT RESEARCH, 2009, 122 (05) : 571 - 579
  • [8] Jasmonic acid and glucose synergistically modulate the accumulation of glucosinolates in Arabidopsis thaliana
    Guo, Rongfang
    Shen, Wangshu
    Qian, Hongmei
    Zhang, Min
    Liu, Lihong
    Wang, Qiaomei
    JOURNAL OF EXPERIMENTAL BOTANY, 2013, 64 (18) : 5707 - 5719
  • [9] Roles of salicylic acid, jasmonic acid, and ethylene in cpr-induced resistance in Arabidopsis
    Clarke, JD
    Volko, SM
    Ledford, H
    Ausubel, FM
    Dong, XN
    PLANT CELL, 2000, 12 (11): : 2175 - 2190
  • [10] Oligogalacturonides induce resistance in Arabidopsis thaliana by triggering salicylic acid and jasmonic acid pathways against Pst DC3000
    Howlader, Prianka
    Bose, Santosh Kumar
    Jia, Xiaochen
    Zhang, Chunlai
    Wang, Wenxia
    Yin, Heng
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2020, 164 : 4054 - 4064