Fractional order QFT Controller for Nonlinear Systems

被引:0
|
作者
Meng, Li [1 ,2 ]
Diao, Fen [2 ]
机构
[1] Northeastern Univ, Dept Informat Sci & Engn, Shenyang 110004, Peoples R China
[2] Shenyang Univ, Dept Informat Engn, Shenyang 110044, Peoples R China
来源
PROCEEDINGS OF THE 10TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA 2012) | 2012年
关键词
Fractional order controller; Quantitative Feedback Theory (QFT); Nonlinear System; Disturbance Rejection; Loop Shaping; QUANTITATIVE FEEDBACK THEORY; UNCERTAINTY; PLANTS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents the design of a robust fractional order controller for the nonlinear RC circuit based on quantitative feedback theory (QFT). In this work, a fractional-order compensator, with a flexible controller structure, is introduced into the QFT design to give a better approximation of optimum open loop in Nichols. It has been demonstrated that the fractional order controller can provide smaller high frequency gain than the integer order controller due to its extra tunable parameters.
引用
收藏
页码:2136 / 2141
页数:6
相关论文
共 50 条
  • [31] QFT loop shaping with fractional order complex pole-based terms
    Cervera, Joaquin
    Banos, Alfonso
    JOURNAL OF VIBRATION AND CONTROL, 2013, 19 (02) : 294 - 308
  • [32] Adaptive Fuzzy Backstepping Control of Fractional-Order Nonlinear Systems
    Liu, Heng
    Pan, Yongping
    Li, Shenggang
    Chen, Ye
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2017, 47 (08): : 2209 - 2217
  • [33] New asymptotic stability results for nonautonomous nonlinear fractional order systems
    Lenka, Bichitra Kumar
    Bora, Swaroop Nandan
    IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION, 2022, 39 (04) : 951 - 967
  • [34] Reply to "Comments on "Fuzzy fractional order sliding mode controller for nonlinear systems, Commun Nonlinear Sci Numer Simulat 15 (2010) 963-978""
    Delavari, Hadi
    Ghaderi, Reza
    Ranjbar, Abolfazl
    Momani, Shaher
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (10) : 4010 - 4014
  • [35] Robust design of fractional order IMC controller for fractional order processes with time delay
    Gnaneshwar, Kurnam
    Trivedi, Rishika
    Padhy, Prabin Kumar
    INTERNATIONAL JOURNAL OF NUMERICAL MODELLING-ELECTRONIC NETWORKS DEVICES AND FIELDS, 2022, 35 (05)
  • [36] Synchronization of uncertain fractional-order chaotic systems with disturbance based on a fractional terminal sliding mode controller
    Wang Dong-Feng
    Zhang Jin-Ying
    Wang Xiao-Yan
    CHINESE PHYSICS B, 2013, 22 (04)
  • [37] Lyapunov-based fractional-order PID controller design for coupled nonlinear system
    Zaki, Hammad
    Rashid, Aamir
    Masud, Usman
    TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2025, 47 (06) : 1046 - 1056
  • [38] Adaptive Control and Synchronization for a Class of Nonlinear Fractional Order Systems with Uncertainty
    雷华静
    寇春海
    蔡锐阳
    何彬彬
    JournalofDonghuaUniversity(EnglishEdition), 2019, 36 (04) : 405 - 412
  • [39] Synchronization of uncertain fractional-order chaotic systems with disturbance based on a fractional terminal sliding mode controller
    王东风
    张金营
    王晓燕
    Chinese Physics B, 2013, 22 (04) : 178 - 184
  • [40] A TDF fractional order controller design for time delay systems using IMC approach
    Gnaneshwar, K.
    Padhy, Prabin Kumar
    2023 NINTH INDIAN CONTROL CONFERENCE, ICC, 2023, : 425 - 430