共 50 条
Effects of substrate stiffness on adipogenic and osteogenic differentiation of human mesenchymal stem cells
被引:96
|作者:
Zhao, Wen
[1
,2
]
Li, Xiaowei
[3
]
Liu, Xiaoyan
[3
]
Zhang, Ning
[3
,4
,5
]
Wen, Xuejun
[3
,4
,5
,6
,7
,8
]
机构:
[1] Gen Hosp Chinese Peoples Liberat Army, Hosp 301, Dept Orthoped Surg, Beijing 100853, Peoples R China
[2] Beijing Aerosp Gen Hosp, Dept Orthoped Surg, Being 100076, Peoples R China
[3] Clemson Univ, Dept Bioengn, Clemson MUSC Bioengn Program, Charleston, SC 29425 USA
[4] Med Univ S Carolina, Dept Regenerat Med & Cell Biol, Charleston, SC 29425 USA
[5] Med Univ S Carolina, Dept Microbiol & Immunol, Charleston, SC 29425 USA
[6] Med Univ S Carolina, Dept Orthoped Surg, Charleston, SC 29425 USA
[7] Tongji Univ, Sch Med, East Hosp, Shanghai 200120, Peoples R China
[8] Tongji Univ, Sch Med, Inst Biomed Engn & Nano Sci, Shanghai 200120, Peoples R China
来源:
MATERIALS SCIENCE AND ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS
|
2014年
/
40卷
基金:
美国国家科学基金会;
关键词:
Hydrogel;
Mechanical property;
Mesenchymal stem cells;
Differentiation;
MATRIX-MEDIATED RETENTION;
HUMAN BONE-MARROW;
GENE-EXPRESSION;
ADIPOCYTE DIFFERENTIATION;
FOCAL ADHESIONS;
ADAPTATION;
EXPANSION;
HYDROGELS;
FORCES;
D O I:
10.1016/j.msec.2014.03.048
中图分类号:
TB3 [工程材料学];
R318.08 [生物材料学];
学科分类号:
0805 ;
080501 ;
080502 ;
摘要:
Substrate mechanical properties, in addition to biochemical signals, have been shown to modulate cell phenotype. In this study, we inspected the effects of substrate stiffness on human mesenchymal stem cells (hMSCs) derived from adult human bone marrow differentiation into adipogenic and osteogenic cells. A chemically modified extracellular matrix derived and highly biocompatible hydrogel, based on thiol functionalized hyaluronic acid (HA-SH) and thiol functionalized recombinant human gelatin (Gtn-SH), which can be crosslinked by poly (ethylene glycol) tetra-acrylate (PEGTA), was used as a model system. The stiffness of the hydrogel was controlled by adjusting the crosslinking density. Human bone marrow MSCs were cultured on the hydrogels with different stiffness under adipogenic and osteogenic conditions. Oil Red O staining and F-actin staining were applied to assess the change of cell morphologies under adipogenic and osteogenic differentiation, respectively. Gene expression of cells was determined with reverse transcription polymerase chain reaction (RT-PCR) as a function of hydrogel stiffness. Results support the hypothesis that adipogenic and osteogenic differentiation of hMSCs are inclined to occur on substrate with stiffness similar to their in vivo microenvironments. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:316 / 323
页数:8
相关论文