Continuous Opinion Dynamics in Complex Networks

被引:0
作者
Guo, L. [1 ]
Cai, X.
机构
[1] Huazhong Cent China Normal Univ, Complex Sci Ctr, Wuhan 430079, Peoples R China
基金
中国国家自然科学基金;
关键词
opinion dynamics; complex networks; bifurcation phenomena; BOUNDED CONFIDENCE; EVOLUTION;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Many realistic social networks share some universal characteristic properties, such as the small-world effects and the heterogeneous distribution of connectivity degree, which affect the dynamics in society system, especially the opinion dynamics in society. To see this, we study the opinion dynamics of the Improved Deffuant Model (IDM) in complex networks. When the two opinions differ by less than the confidence parameter epsilon (0 < epsilon < 1), each opinion moves partly in the direction of the other with the convergence parameter mu, which is a function of the opposite's degree k; otherwise, the two refuse to discuss and no opinion is changed. We analyze the evolution of the steady opinion s(*) as a function of the confidence parameter epsilon, the relation between the minority steady opinion s(*)(min) and the individual connectivity k, and find some interesting results that show the dependence of the opinion dynamics on the confidence parameter and on the system topology. This study provides a new perspective and tools to understand the effects of complex system topology on opinion dynamics.
引用
收藏
页码:1045 / 1053
页数:9
相关论文
共 26 条
  • [1] Statistical mechanics of complex networks
    Albert, R
    Barabási, AL
    [J]. REVIEWS OF MODERN PHYSICS, 2002, 74 (01) : 47 - 97
  • [2] Dynamical affinity in opinion dynamics modeling
    Bagnoli, Franco
    Carletti, Timoteo
    Fanelli, Duccio
    Guarino, Alessio
    Guazzini, Andrea
    [J]. PHYSICAL REVIEW E, 2007, 76 (06):
  • [3] Evolution of the social network of scientific collaborations
    Barabási, AL
    Jeong, H
    Néda, Z
    Ravasz, E
    Schubert, A
    Vicsek, T
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2002, 311 (3-4) : 590 - 614
  • [4] Emergence of scaling in random networks
    Barabási, AL
    Albert, R
    [J]. SCIENCE, 1999, 286 (5439) : 509 - 512
  • [5] Complex networks: Structure and dynamics
    Boccaletti, S.
    Latora, V.
    Moreno, Y.
    Chavez, M.
    Hwang, D. -U.
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2006, 424 (4-5): : 175 - 308
  • [6] CASTELLANO C, ARXIV07103256
  • [7] Structure of a large social network -: art. no. 036131
    Csányi, G
    Szendroi, B
    [J]. PHYSICAL REVIEW E, 2004, 69 (03) : 036131 - 1
  • [8] Mixing beliefs among interacting agents
    Deffuant, G
    Neau, D
    Amblard, F
    Weisbuch, G
    [J]. APPLICATIONS OF SIMULATION TO SOCIAL SCIENCES, 2000, : 87 - 98
  • [9] DEFFUANT G, J ARTIFICIAL SOC SOC, V0005
  • [10] Universality of the threshold for complete consensus for the opinion dynamics of Deffuant et al.
    Fortunato, S
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2004, 15 (09): : 1301 - 1307