Concentration-diffusion Effects in Viscous Incompressible Flows

被引:6
|
作者
Brandolese, Lorenzo [1 ]
机构
[1] Univ Lyon 1, CNRS, Inst Camille Jordan, UMR 5208, F-69622 Villeurbanne, France
关键词
NAVIER-STOKES SYSTEM; ASYMPTOTIC PROFILES; EXTERIOR DOMAIN; DECAY; SPACE;
D O I
10.1512/iumj.2009.58.3504
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a finite sequence of times 0 < t(1) <... < t(N), we construct an example of a smooth solution of the free nonstationnary Navier-Stokes equations in R(d), d = 2,3, such that: (1) The velocity field u(x,t) is spatially poorly localized at the beginning of the evolution but tends to concentrate until, as the time t approaches t(1), it becomes well-localized. (ii) Then u spreads out again after t(1), and such concentration-diffusion phenomena are later reproduced near the instants t(2), t(3), - - - -
引用
收藏
页码:789 / 806
页数:18
相关论文
共 50 条
  • [11] Decay properties for the incompressible Navier-Stokes flows in a half space
    Han, Pigong
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2022, 152 (06) : 1509 - 1532
  • [12] ON POINTWISE DECAY OF LINEARIZED STATIONARY INCOMPRESSIBLE VISCOUS FLOW AROUND ROTATING AND TRANSLATING BODIES
    Deuring, Paul
    Kracmar, Stanislav
    Necasova, Sarka
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2011, 43 (02) : 705 - 738
  • [13] On the Influence of an Absorption Term in Incompressible Fluid Flows
    de Oliveira, Hermenegildo B.
    ADVANCES IN MATHEMATICAL FLUID MECHANICS: DEDICATED TO GIOVANNI PAOLO GALDI ON THE OCCASION OF HIS 60TH BIRTHDAY, INTERNATIONAL CONFERENCE ON MATHEMATICAL FLUID MECHANICS, 2007, 2010, : 409 - 424
  • [14] Asymptotic profile for the interaction of a rigid ball and an incompressible viscous fluid
    Bae, Hyeong-Ohk
    Jin, Bum Ja
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 376 : 682 - 713
  • [15] On the reconstruction of obstacles and of rigid bodies immersed in a viscous incompressible fluid
    San Martin, Jorge
    Schwindt, Erica L.
    Takahashi, Takeo
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2017, 25 (01): : 1 - 21
  • [16] Global existence of three dimensional incompressible MHD flows
    Wang, Yu-Zhu
    Li, Pengfei
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (14) : 4246 - 4256
  • [17] Attractors for the inhomogeneous incompressible Navier-Stokes flows
    Han, Pigong
    Lei, Keke
    Liu, Chenggang
    Wang, Xuewen
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2023, 69
  • [18] A LEADING TERM FOR THE VELOCITY OF STATIONARY VISCOUS INCOMPRESSIBLE FLOW AROUND A RIGID BODY PERFORMING A ROTATION AND A TRANSLATION
    Deuring, Paul
    Kracmar, Stanislav
    Necasova, Sarka
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2017, 37 (03) : 1389 - 1409
  • [19] Two-dimensional incompressible viscous flow around a small obstacle
    D. Iftimie
    M. C. Lopes Filho
    H. J. Nussenzveig Lopes
    Mathematische Annalen, 2006, 336
  • [20] A General Approach to Time Periodic Incompressible Viscous Fluid Flow Problems
    Matthias Geissert
    Matthias Hieber
    Thieu Huy Nguyen
    Archive for Rational Mechanics and Analysis, 2016, 220 : 1095 - 1118