Concentration-diffusion Effects in Viscous Incompressible Flows

被引:6
作者
Brandolese, Lorenzo [1 ]
机构
[1] Univ Lyon 1, CNRS, Inst Camille Jordan, UMR 5208, F-69622 Villeurbanne, France
关键词
NAVIER-STOKES SYSTEM; ASYMPTOTIC PROFILES; EXTERIOR DOMAIN; DECAY; SPACE;
D O I
10.1512/iumj.2009.58.3504
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a finite sequence of times 0 < t(1) <... < t(N), we construct an example of a smooth solution of the free nonstationnary Navier-Stokes equations in R(d), d = 2,3, such that: (1) The velocity field u(x,t) is spatially poorly localized at the beginning of the evolution but tends to concentrate until, as the time t approaches t(1), it becomes well-localized. (ii) Then u spreads out again after t(1), and such concentration-diffusion phenomena are later reproduced near the instants t(2), t(3), - - - -
引用
收藏
页码:789 / 806
页数:18
相关论文
共 13 条
[1]  
[Anonymous], 2002, FUNKC EKVACIOJ-SER I
[2]  
[Anonymous], 2002, CHAPMAN HALL CRC RES
[3]  
[Anonymous], 1999, SEM LOTHAR COMBIN
[4]  
AUSCHER P, ESPACES CRITIQUES SY
[5]   Space-time decay of Navier-Stokes flows invariant under rotations [J].
Brandolese, L .
MATHEMATISCHE ANNALEN, 2004, 329 (04) :685-706
[6]   On the instantaneous spreading for the Navier-Stokes system in the whole space [J].
Brandolese, L ;
Meyer, Y .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2002, 8 :273-285
[7]  
BRANDOLESE L, ARCH RATION IN PRESS
[8]   New asymptotic profiles of nonstationary solutions of the Navier-Stokes system [J].
Brandolese, Lorenzo ;
Vigneron, Francois .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2007, 88 (01) :64-86
[9]  
GALLAY T, TROUBILLONS OSSEN CO
[10]   On L1-summability and asymptotic profiles for smooth solutions to Navier-Stokes equations in a 3D exterior domain [J].
He, C ;
Miyakawa, T .
MATHEMATISCHE ZEITSCHRIFT, 2003, 245 (02) :387-417