A new quantum speed-meter interferometer: measuring speed to search for intermediate mass black holesa

被引:24
作者
Danilishin, Stefan L. [1 ,2 ,3 ]
Knyazev, Eugene [4 ]
Voronchev, Nikita V. [4 ]
Khalili, Farid Ya. [4 ]
Graf, Christian [3 ]
Steinlechner, Sebastian [5 ,6 ]
Hennig, Jan-Simon [3 ]
Hild, Stefan [3 ]
机构
[1] Leibniz Univ Hannover, Inst Theoret Phys, Callinstr 38, D-30167 Hannover, Germany
[2] Albert Einstein Inst, Max Planck Inst Gravitat Phys, Callinstr 38, D-30167 Hannover, Germany
[3] Univ Glasgow, SUPA, Sch Phys & Astron, Glasgow G12 8QQ, Lanark, Scotland
[4] Moscow MV Lomonosov State Univ, Fac Phys, Moscow 119991, Russia
[5] Univ Hamburg, Inst Laserphys, Luruper Chaussee 149, D-22761 Hamburg, Germany
[6] Univ Hamburg, Zentrum Opt Quantentechnol, Luruper Chaussee 149, D-22761 Hamburg, Germany
基金
欧洲研究理事会; 俄罗斯基础研究基金会;
关键词
Stars - Gravity waves - Laser interferometry - Black holes - Gravitational effects - Observatories;
D O I
10.1038/s41377-018-0004-2
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The recent discovery of gravitational waves (GW) by Advanced LIGO (Laser Interferometric Gravitational-wave Observatory) has impressively launched the novel field of gravitational astronomy and allowed us to glimpse exciting objects about which we could previously only speculate. Further sensitivity improvements at the low-frequency end of the detection band of future GW observatories must rely on quantum non-demolition (QND) methods to suppress fundamental quantum fluctuations of the light fields used to readout the GW signal. Here we present a novel concept of how to turn a conventional Michelson interferometer into a QND speed-meter interferometer with coherently suppressed quantum back-action noise. We use two orthogonal polarizations of light and an optical circulator to couple them. We carry out a detailed analysis of how imperfections and optical loss influence the achievable sensitivity. We find that the proposed configuration significantly enhances the low-frequency sensitivity and increases the observable event rate of binary black-hole coalescences in the range of 10(2) - 10(3) M-circle dot by a factor of up to similar to 300.
引用
收藏
页数:9
相关论文
共 22 条
[1]   Observation of Gravitational Waves from a Binary Black Hole Merger [J].
Abbott, B. P. ;
Abbott, R. ;
Abbott, T. D. ;
Abernathy, M. R. ;
Acernese, F. ;
Ackley, K. ;
Adams, C. ;
Adams, T. ;
Addesso, P. ;
Adhikari, R. X. ;
Adya, V. B. ;
Affeldt, C. ;
Agathos, M. ;
Agatsuma, K. ;
Aggarwal, N. ;
Aguiar, O. D. ;
Aiello, L. ;
Ain, A. ;
Ajith, P. ;
Allen, B. ;
Allocca, A. ;
Altin, P. A. ;
Anderson, S. B. ;
Anderson, W. G. ;
Arai, K. ;
Arain, M. A. ;
Araya, M. C. ;
Arceneaux, C. C. ;
Areeda, J. S. ;
Arnaud, N. ;
Arun, K. G. ;
Ascenzi, S. ;
Ashton, G. ;
Ast, M. ;
Aston, S. M. ;
Astone, P. ;
Aufmuth, P. ;
Aulbert, C. ;
Babak, S. ;
Bacon, P. ;
Bader, M. K. M. ;
Baker, P. T. ;
Baldaccini, F. ;
Ballardin, G. ;
Ballmer, S. W. ;
Barayoga, J. C. ;
Barclay, S. E. ;
Barish, B. C. ;
Barker, D. ;
Barone, F. .
PHYSICAL REVIEW LETTERS, 2016, 116 (06)
[2]   Binary Black Hole Mergers in the First Advanced LIGO Observing Run [J].
Abbott, B. P. ;
Abbott, R. ;
Abbott, T. D. ;
Abernathy, M. R. ;
Acernese, F. ;
Ackley, K. ;
Adams, C. ;
Adams, T. ;
Addesso, P. ;
Adhikari, R. X. ;
Adya, V. B. ;
Affeldt, C. ;
Agathos, M. ;
Agatsuma, K. ;
Aggarwal, N. ;
Aguiar, O. D. ;
Aiello, L. ;
Ain, A. ;
Ajith, P. ;
Allen, B. ;
Allocca, A. ;
Altin, P. A. ;
Anderson, S. B. ;
Anderson, W. G. ;
Arai, K. ;
Araya, M. C. ;
Arceneaux, C. C. ;
Areeda, J. S. ;
Arnaud, N. ;
Arun, K. G. ;
Ascenzi, S. ;
Ashton, G. ;
Ast, M. ;
Aston, S. M. ;
Astone, P. ;
Aufmuth, P. ;
Aulbert, C. ;
Babak, S. ;
Bacon, P. ;
Bader, M. K. M. ;
Baker, P. T. ;
Baldaccini, F. ;
Ballardin, G. ;
Ballmer, S. W. ;
Barayoga, J. C. ;
Barclay, S. E. ;
Barish, B. C. ;
Barker, D. ;
Barone, F. ;
Barr, B. .
PHYSICAL REVIEW X, 2016, 6 (04)
[3]  
BRAGINSKY VB, 1968, SOV PHYS JETP-USSR, V26, P831
[4]   GRAVITATIONAL-WAVE ANTENNA WITH QND SPEED METER [J].
BRAGINSKY, VB ;
KHALILI, FJ .
PHYSICS LETTERS A, 1990, 147 (5-6) :251-256
[5]   Dual-resonator speed meter for a free test mass [J].
Braginsky, VB ;
Gorodetsky, ML ;
Khalili, FY ;
Thorne, KS .
PHYSICAL REVIEW D, 2000, 61 (04)
[6]   NEW FORMALISM FOR 2-PHOTON QUANTUM OPTICS .1. QUADRATURE PHASES AND SQUEEZED STATES [J].
CAVES, CM ;
SCHUMAKER, BL .
PHYSICAL REVIEW A, 1985, 31 (05) :3068-3092
[7]   Macroscopic quantum mechanics: theory and experimental concepts of optomechanics [J].
Chen, Yanbei .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2013, 46 (10)
[8]   Sagnac interferometer as a speed-meter-type, quantum-nondemolition gravitational-wave detector [J].
Chen, YB .
PHYSICAL REVIEW D, 2003, 67 (12)
[9]   Design and development of the advanced LIGO monolithic fused silica suspension [J].
Cumming, A. V. ;
Bell, A. S. ;
Barsotti, L. ;
Barton, M. A. ;
Cagnoli, G. ;
Cook, D. ;
Cunningham, L. ;
Evans, M. ;
Hammond, G. D. ;
Harry, G. M. ;
Heptonstall, A. ;
Hough, J. ;
Jones, R. ;
Kumar, R. ;
Mittleman, R. ;
Robertson, N. A. ;
Rowan, S. ;
Shapiro, B. ;
Strain, K. A. ;
Tokmakov, K. ;
Torrie, C. ;
van Veggel, A. A. .
CLASSICAL AND QUANTUM GRAVITY, 2012, 29 (03)
[10]   Quantum noise of non-ideal Sagnac speed meter interferometer with asymmetries [J].
Danilishin, S. L. ;
Graef, C. ;
Leavey, S. S. ;
Hennig, J. ;
Houston, E. A. ;
Pascucci, D. ;
Steinlechner, S. ;
Wright, J. ;
Hild, S. .
NEW JOURNAL OF PHYSICS, 2015, 17