CUP PRODUCTS IN HOPF CYCLIC COHOMOLOGY VIA CYCLIC MODULES

被引:11
作者
Rangipour, Bahram [1 ]
机构
[1] Univ New Brunswick, Dept Math & Stat, Fredericton, NB E3B 5A3, Canada
关键词
cup product; Hopf cyclic cohomology;
D O I
10.4310/HHA.2008.v10.n2.a14
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We redefine the cup products in Hopf cyclic cohomology. These cup products were first defined by the author and M. Khalkhali via a relatively complicated method as a generalization of Connes' cup product for cyclic cohomology of algebras. In this paper we use the generalized Eilenberg-Zilber theorem and define the cup product using a bicocyclic module naturally associated to the cocyclic modules of the coalgebras and the algebras in question. In the last part of the paper we derive some formulas for the cup products.
引用
收藏
页码:273 / 286
页数:14
相关论文
共 14 条
[1]  
[Anonymous], 1992, FUNDAMENTAL PRINCIPL
[2]   Hopf algebras, cyclic cohomology and the transverse index theorem [J].
Connes, A ;
Moscovici, H .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 198 (01) :199-246
[3]  
CONNES A, 2006, ASPECTS MATH E, V37, P79
[4]  
Connes A., ARXIVMATHQA0505475
[5]  
Connes A, 1985, Inst. Hautes Etudes Sci. Publ. Math., V62, P41, DOI 10.1007/BF02698807
[6]   Cyclic cohomology of Hopf algebras [J].
Crainic, M .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2002, 166 (1-2) :29-66
[7]  
Getzler E., 1993, J REINE ANGEW MATH, V445, P163
[8]   Secondary characteristic classes and cyclic cohomology of Hopf algebras [J].
Gorokhovsky, A .
TOPOLOGY, 2002, 41 (05) :993-1016
[9]   Hopf-cyclic homology and cohomology with coefficients [J].
Hajac, PM ;
Khalkhali, M ;
Rangipour, B ;
Sommerhäuser, Y .
COMPTES RENDUS MATHEMATIQUE, 2004, 338 (09) :667-672
[10]   Stable anti-Yetter-Drinfeld modules [J].
Hajac, PM ;
Khalkhali, M ;
Rangipour, B ;
Sommerhäuser, Y .
COMPTES RENDUS MATHEMATIQUE, 2004, 338 (08) :587-590