Mumford-Shah minimizers on thin plates

被引:1
作者
David, Guy [1 ]
机构
[1] Univ Paris Sud, F-91405 Orsay, France
关键词
Mumford-Shah functional; thin plates;
D O I
10.1007/s00526-006-0018-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that limits of Mumford-Shah minimizers in product domains Omega = Omega' x (0, t), t small, are Mumford-Shah minimizers in one less dimension. The main ingredient of the proof is a symmetry argument from Dal Maso, Morel, and Solimini.
引用
收藏
页码:203 / 232
页数:30
相关论文
共 15 条
[1]   EXISTENCE THEORY FOR A NEW CLASS OF VARIATIONAL-PROBLEMS [J].
AMBROSIO, L .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1990, 111 (04) :291-322
[2]  
Ambrosio L., 2000, OXFORD MATH MONOGRAP
[3]  
Ambrosio L., 1997, ANN SCUOLA NORM SUP, V24, P39
[4]  
[Anonymous], ACTA MATH
[5]  
Besicovitch AS., 1945, J LOND MATH SOC, V20, P110
[6]   Monotonicity and separation for the Mumford-Shah problem [J].
David, G ;
Léger, JC .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2002, 19 (05) :631-682
[7]   C-1-Arcs for minimizers of the Mumford-Shah functional [J].
David, G .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1996, 56 (03) :783-888
[8]  
David G, 2005, PROG MATH, V233
[9]   EXISTENCE THEOREM FOR A MINIMUM PROBLEM WITH FREE DISCONTINUITY SET [J].
DEGIORGI, E ;
CARRIERO, M ;
LEACI, A .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1989, 108 (03) :195-218
[10]  
Federer H, 1969, Geometric measure theory