Bayesian Sparse Topic Model

被引:24
作者
Chien, Jen-Tzung [1 ]
Chang, Ying-Lan [1 ]
机构
[1] Natl Chiao Tung Univ, Dept Elect & Comp Engn, Hsinchu 30010, Taiwan
来源
JOURNAL OF SIGNAL PROCESSING SYSTEMS FOR SIGNAL IMAGE AND VIDEO TECHNOLOGY | 2014年 / 74卷 / 03期
关键词
Bayesian sparse learning; Feature selection; Topic model; VARIABLE SELECTION;
D O I
10.1007/s11265-013-0759-x
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a new Bayesian sparse learning approach to select salient lexical features for sparse topic modeling. The Bayesian learning based on latent Dirichlet allocation (LDA) is performed by incorporating the spike-and-slab priors. According to this sparse LDA (sLDA), the spike distribution is used to select salient words while the slab distribution is applied to establish the latent topic model based on those selected relevant words. The variational inference procedure is developed to estimate prior parameters for sLDA. In the experiments on document modeling using LDA and sLDA, we find that the proposed sLDA does not only reduce the model perplexity but also reduce the memory and computation costs. Bayesian feature selection method does effectively identify relevant topic words for building sparse topic model.
引用
收藏
页码:375 / 389
页数:15
相关论文
共 24 条
[1]  
[Anonymous], 2005, Advances in Neural Information Processing Systems (NIPS)
[2]  
[Anonymous], 2007, Bayesian Statistics
[3]  
[Anonymous], 2006, Pattern recognition and machine learning
[4]   Bayesian Compressive Sensing Using Laplace Priors [J].
Babacan, S. Derin ;
Molina, Rafael ;
Katsaggelos, Aggelos K. .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2010, 19 (01) :53-63
[5]   Latent Dirichlet allocation [J].
Blei, DM ;
Ng, AY ;
Jordan, MI .
JOURNAL OF MACHINE LEARNING RESEARCH, 2003, 3 (4-5) :993-1022
[6]  
Chang Y.J., 2011, 2011 IEEE INT C MULT, P1, DOI DOI 10.1109/ICME.2011.6012177
[7]  
Chang YL, 2009, INT CONF ACOUST SPEE, P1689, DOI 10.1109/ICASSP.2009.4959927
[8]   Dirichlet Class Language Models for Speech Recognition [J].
Chien, Jen-Tzung ;
Chueh, Chuang-Hua .
IEEE TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2011, 19 (03) :482-495
[9]  
Chueh CH, 2008, INT CONF ACOUST SPEE, P5089
[10]  
Doshi-Velez F., 2009, P ART INT STAT