Hybrid Surface-Phonon-Plasmon Polariton Modes in Graphene/Monolayer h-BN Heterostructures

被引:299
作者
Brar, Victor W. [1 ,2 ]
Jang, Min Seok [3 ]
Sherrott, Michelle [1 ]
Kim, Seyoon [1 ]
Lopez, Josue J. [1 ]
Kim, Laura B. [1 ]
Choi, Mansoo [3 ,4 ]
Atwater, Harry [1 ,2 ]
机构
[1] CALTECH, Thomas J Watson Lab Appl Phys, Pasadena, CA 91125 USA
[2] CALTECH, Kavli Nanosci Inst, Pasadena, CA 91125 USA
[3] Seoul Natl Univ, Global Frontier Ctr Multiscale Energy Syst, Seoul 151747, South Korea
[4] Seoul Natl Univ, Sch Mech & Aerosp Engn, Div WCU Multiscale Mech Design, Seoul 151742, South Korea
基金
新加坡国家研究基金会;
关键词
Graphene; boron nitride; plasmonics; strong coupling; phonon-induced transparency; surface phonon plasmon polariton; plasmon phonon hybridization; GRAPHENE; SPECTROSCOPY;
D O I
10.1021/nl501096s
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Infrared transmission measurements reveal the hybridization of graphene plasmons and the phonons in a monolayer hexagonal boron nitride (h-BN) sheet. Frequency-wavevector dispersion relations of the electromagnetically coupled graphene plasmon/h-BN phonon modes are derived from measurement of nanoresonators with widths varying from 30 to 300 nm. It is shown that the graphene plasmon mode is split into two distinct optical modes that display an anticrossing behavior near the energy of the h-BN optical phonon at 1370 cm(-1). We explain this behavior as a classical electromagnetic strong-coupling with the highly confined near fields of the graphene plasmons allowing for hybridization with the phonons of the atomically thin h-BN layer to create two clearly separated new surface-phonon-plasmon-polariton (SPPP) modes.
引用
收藏
页码:3876 / 3880
页数:5
相关论文
共 26 条
[1]   Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays [J].
Adato, Ronen ;
Yanik, Ahmet A. ;
Amsden, Jason J. ;
Kaplan, David L. ;
Omenetto, Fiorenzo G. ;
Hong, Mi K. ;
Erramilli, Shyamsunder ;
Altug, Hatice .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (46) :19227-19232
[2]  
Atwater HA, 2010, NAT MATER, V9, P205, DOI [10.1038/nmat2629, 10.1038/NMAT2629]
[3]   Highly Confined Tunable Mid-Infrared Plasmonics in Graphene Nanoresonators [J].
Brar, Victor W. ;
Jang, Min Seok ;
Sherrott, Michelle ;
Lopez, Josue J. ;
Atwater, Harry A. .
NANO LETTERS, 2013, 13 (06) :2541-2547
[4]   Surface-Enhanced Infrared Absorption Using Individual Cross Antennas Tailored to Chemical Moieties [J].
Brown, Lisa V. ;
Zhao, Ke ;
King, Nicholas ;
Sobhani, Heidar ;
Nordlander, Peter ;
Halas, Naomi J. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (09) :3688-3695
[5]   Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays [J].
Dintinger, J ;
Klein, S ;
Bustos, F ;
Barnes, WL ;
Ebbesen, TW .
PHYSICAL REVIEW B, 2005, 71 (03)
[6]   Space-time dispersion of graphene conductivity [J].
Falkovsky, L. A. ;
Varlamov, A. A. .
EUROPEAN PHYSICAL JOURNAL B, 2007, 56 (04) :281-284
[7]   NORMAL MODES IN HEXAGONAL BORON NITRIDE [J].
GEICK, R ;
PERRY, CH ;
RUPPRECH.G .
PHYSICAL REVIEW, 1966, 146 (02) :543-&
[8]   Vacuum Rabi Splitting and Strong-Coupling Dynamics for Surface-Plasmon Polaritons and Rhodamine 6G Molecules [J].
Hakala, T. K. ;
Toppari, J. J. ;
Kuzyk, A. ;
Pettersson, M. ;
Tikkanen, H. ;
Kunttu, H. ;
Torma, P. .
PHYSICAL REVIEW LETTERS, 2009, 103 (05)
[9]   Phonon-enhanced light-matter interaction at the nanometre scale [J].
Hillenbrand, R ;
Taubner, T ;
Keilmann, F .
NATURE, 2002, 418 (6894) :159-162
[10]   Plasmonics in graphene at infrared frequencies [J].
Jablan, Marinko ;
Buljan, Hrvoje ;
Soljacic, Marin .
PHYSICAL REVIEW B, 2009, 80 (24)