The dynamics near quasi-parabolic fixed points of holomorphic diffeomorphisms in C2

被引:17
作者
Bracci, F [1 ]
Molino, L [1 ]
机构
[1] Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy
关键词
D O I
10.1353/ajm.2004.0015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let F be a germ of holomorphic diffeomorphism of C-2 fixing O and such that dF(O) has eigenvalues 1 and e(itheta) with \e(itheta)\ = 1 and e(itheta) not equal 1. Introducing suitable normal forms for F we define an invariant, nu(F) greater than or equal to 2, and a generic condition, that of being dynamically separating. In the case F is dynamically separating, we prove that there exist nu(F) - 1 parabolic curves for F at O tangent to the eigenspace of 1.
引用
收藏
页码:671 / 686
页数:16
相关论文
共 17 条