Variational formulation and efficient implementation for solving the tempered fractional problems

被引:21
作者
Deng, Weihua [1 ]
Zhang, Zhijiang [1 ]
机构
[1] Lanzhou Univ, Sch Math & Stat, Gansu Key Lab Appl Math & Complex Syst, Lanzhou 730000, Gansu, Peoples R China
基金
中国国家自然科学基金;
关键词
implementation; tempered Levy flight; tempered trap; variational formulation; DIFFUSION EQUATION; NUMERICAL-METHODS; GALERKIN METHOD; SPECTRAL METHOD; SPACE;
D O I
10.1002/num.22254
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Because of the finiteness of the life span and boundedness of the physical space, the more reasonable or physical choice is the tempered power-law instead of pure power-law for the CTRW model in characterizing the waiting time and jump length of the motion of particles. This paper focuses on providing the variational formulation and efficient implementation for solving the corresponding deterministic/macroscopic models, including the space tempered fractional equation and time tempered fractional equation. The convergence, numerical stability, and a series of variational equalities are theoretically proved. And the theoretical results are confirmed by numerical experiments.
引用
收藏
页码:1224 / 1257
页数:34
相关论文
共 53 条
[1]  
[Anonymous], 1999, FRACTIONAL DIFFERENT
[2]  
[Anonymous], 2015, MITTAG LEFFLER FNCTI
[3]   ERROR-BOUNDS FOR FINITE ELEMENT METHOD [J].
BABUSKA, I .
NUMERISCHE MATHEMATIK, 1971, 16 (04) :322-&
[4]   Tempered stable Levy motion and transient super-diffusion [J].
Baeumer, Boris ;
Meerschaert, Mark M. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 233 (10) :2438-2448
[5]  
Brenner S., 2007, The Mathematical Theory of Finite Element Methods. Texts in Applied Mathematics
[6]   AN EFFICIENT IMPLICIT FEM SCHEME FOR FRACTIONAL-IN-SPACE REACTION-DIFFUSION EQUATIONS [J].
Burrage, Kevin ;
Hale, Nicholas ;
Kay, David .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2012, 34 (04) :A2145-A2172
[7]   On Distributions of Functionals of Anomalous Diffusion Paths [J].
Carmi, Shai ;
Turgeman, Lior ;
Barkai, Eli .
JOURNAL OF STATISTICAL PHYSICS, 2010, 141 (06) :1071-1092
[8]   Fluid limit of the continuous-time random walk with general Levy jump distribution functions [J].
Cartea, A. ;
del-Castillo-Negrete, D. .
PHYSICAL REVIEW E, 2007, 76 (04)
[9]  
Chan H.F., 2007, INTRO ITERATIVE TOEP
[10]   Natural cutoff in Levy flights caused by dissipative nonlinearity [J].
Chechkin, AV ;
Gonchar, VY ;
Klafter, J ;
Metzler, R .
PHYSICAL REVIEW E, 2005, 72 (01)