Self-organized criticality and thermodynamic formalism

被引:15
作者
Cessac, B
Blanchard, P
Krüger, T
Meunier, JL
机构
[1] Inst Non Lineaire Nice, F-06560 Valbonne, France
[2] Univ Bielefeld, BiBoS, D-33501 Bielefeld, Germany
关键词
self-organized criticality; hyperbolic dynamical systems with singularities; thermodynamic formalism; Lee-Yang singularity;
D O I
10.1023/B:JOSS.0000028057.16662.89
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We develop a thermodynamic formalism for a dissipative version of the Zhang model of Self-Organized Criticality, where a parameter allows us to tune the local energy dissipation. By constructing a suitable Markov partition we define Gibbs measures (in the sense of Sinai, Ruelle, and Bowen), partition functions, and topological pressure allowing the analysis of probability distributions of avalanches. We discuss the infinite-size limit in this setting. In particular, we show that a Lee-Yang phenomenon occurs in the conservative case. This suggests new connections to classical critical phenomena.
引用
收藏
页码:1283 / 1326
页数:44
相关论文
共 59 条
[1]  
ABE R, 1967, PROG THEOR PHYS, V38
[2]   SELF-ORGANIZED CRITICALITY [J].
BAK, P ;
TANG, C ;
WIESENFELD, K .
PHYSICAL REVIEW A, 1988, 38 (01) :364-374
[3]   SELF-ORGANIZED CRITICALITY - AN EXPLANATION OF 1/F NOISE [J].
BAK, P ;
TANG, C ;
WIESENFELD, K .
PHYSICAL REVIEW LETTERS, 1987, 59 (04) :381-384
[4]  
Bak P., 1996, NATURE WORKS
[5]   Fluctuations and correlations in sandpile models [J].
Barrat, A ;
Vespignani, A ;
Zapperi, S .
PHYSICAL REVIEW LETTERS, 1999, 83 (10) :1962-1965
[6]  
BARREIRA LM, 1998, ERGOD THEOR DYN SYST, V16, P871
[7]  
BECK C, 1993, CAMBRIDGE NONLINEAR, V4
[8]  
BENAIM M, PROMENADES ALEATOIRE
[9]   A dynamical system approach to SOC models of Zhang's type [J].
Blanchard, P ;
Cessac, B ;
Kruger, T .
JOURNAL OF STATISTICAL PHYSICS, 1997, 88 (1-2) :307-318
[10]   What can one learn about self-organized criticality from dynamical systems theory? [J].
Blanchard, P ;
Cessac, B ;
Krüger, T .
JOURNAL OF STATISTICAL PHYSICS, 2000, 98 (1-2) :375-404