Toroidal Vortex Filament Knots and Links: Existence, Stability and Dynamics

被引:0
作者
Kolokolnikov, Theodore [1 ]
Ticknor, Chris [2 ]
Kevrekidis, Panayotis [3 ]
机构
[1] Dalhousie Univ Halifax, Dept Math & Stat, Halifax, NS B3H 3J5, Canada
[2] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
[3] Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA
来源
SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS | 2020年 / 19卷 / 04期
关键词
vortex filaments; stability; fluid dynamics; RELATIVE EQUILIBRIA; VORTICES; INSTABILITY; EVOLUTION; MOTION;
D O I
10.1137/19M1307019
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using the Klein-Majda-Damodaran model of nearly parallel vortex filaments, we construct vortex knots and links on a torus involving periodic boundary conditions and analyze their stability. For a special class of vortex knots-toroidal knots-we give a full characterization of both their energetic and dynamical stabilities. In addition to providing explicit expressions for the relevant waveforms, we derive explicit formulas for their stability boundaries. These include simple links and different realizations of a trefoil knot. It is shown that a ring of more than 7 filaments can potentially be stablized by giving it a slight twist and connecting neighboring filaments on a torus. In addition to rings, (helical) filament lattice configurations are also considered and are found to be dynamically stable for all rotation frequencies and also energetically stable for sufficiently fast rotations. Numerical simulations are used to compare the Klein-Majda-Damodaran model with the full three-dimensional (3D) Gross-Pitaevskii equations as well as to confirm the analytical theory. Potential differences between the quasi-one-dimensional and the fully 3D description are also discussed.
引用
收藏
页码:2403 / 2427
页数:25
相关论文
共 58 条
[1]  
[Anonymous], 1992, VORTEX DYNAMICS, DOI DOI 10.1017/CBO9780511624063
[2]   Vortex crystals [J].
Aref, H ;
Newton, PK ;
Stremler, MA ;
Tokieda, T ;
Vainchtein, DL .
ADVANCES IN APPLIED MECHANICS, VOL 39, 2003, 39 :1-79
[3]   Spectrum of turbulent Kelvin-waves cascade in superfluid helium [J].
Baggaley, Andrew W. ;
Barenghi, Carlo F. .
PHYSICAL REVIEW B, 2011, 83 (13)
[4]  
Banica V, 2013, DIFFER INTEGRAL EQU, V26, P355
[5]   Relative Equilibria of the (1+N)-Vortex Problem [J].
Barry, Anna M. ;
Hall, Glen R. ;
Wayne, C. Eugene .
JOURNAL OF NONLINEAR SCIENCE, 2012, 22 (01) :63-83
[6]   Observation of a spinning top in a Bose-Einstein condensate [J].
Bisset, R. N. ;
Serafini, S. ;
Iseni, E. ;
Barbiero, M. ;
Bienaime, T. ;
Lamporesi, G. ;
Ferrari, G. ;
Dalfovo, F. .
PHYSICAL REVIEW A, 2017, 96 (05)
[7]   VORTICES IN HIGH-TEMPERATURE SUPERCONDUCTORS [J].
BLATTER, G ;
FEIGELMAN, MV ;
GESHKENBEIN, VB ;
LARKIN, AI ;
VINOKUR, VM .
REVIEWS OF MODERN PHYSICS, 1994, 66 (04) :1125-1388
[8]   Scattering and leapfrogging of vortex rings in a superfluid [J].
Caplan, R. M. ;
Talley, J. D. ;
Carretero-Gonzalez, R. ;
Kevrekidis, P. G. .
PHYSICS OF FLUIDS, 2014, 26 (09)
[9]   Collective behaviour of large number of vortices in the plane [J].
Chen, Yuxin ;
Kolokolnikov, Theodore ;
Zhirov, Daniel .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2013, 469 (2156)
[10]   Energy release in the solar corona from spatially resolved magnetic braids [J].
Cirtain, J. W. ;
Golub, L. ;
Winebarger, A. R. ;
De Pontieu, B. ;
Kobayashi, K. ;
Moore, R. L. ;
Walsh, R. W. ;
Korreck, K. E. ;
Weber, M. ;
McCauley, P. ;
Title, A. ;
Kuzin, S. ;
DeForest, C. E. .
NATURE, 2013, 493 (7433) :501-503