Prediction of quantum many-body chaos in the protactinium atom

被引:12
|
作者
Viatkina, A. V. [1 ]
Kozlov, M. G. [2 ,3 ]
Flambaum, V. V. [1 ,4 ]
机构
[1] Johannes Gutenberg Univ Mainz, D-55099 Mainz, Germany
[2] Petersburg Nucl Phys Inst, Gatchina 188300, Russia
[3] St Petersburg Electrotech Univ LETI, Prof Popov St 5, St Petersburg 197376, Russia
[4] Univ New South Wales, Sch Phys, Sydney, NSW 2052, Australia
基金
澳大利亚研究理事会; 俄罗斯基础研究基金会;
关键词
FINITE FERMI SYSTEMS; STATISTICAL-THEORY; ENERGY-LEVELS; PERTURBATION-THEORY; COMPOUND STATES; CE ATOM; CONFIGURATION-INTERACTION; PARITY NONCONSERVATION; MATRIX-ELEMENTS; ENHANCEMENT;
D O I
10.1103/PhysRevA.95.022503
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The energy-level spectrum of the protactinium atom (Pa, Z = 91) is simulated with a configuration interaction calculation. Levels belonging to the separate manifolds of a given total angular momentum and parity J(pi) exhibit distinct properties of many-body quantum chaos. Moreover, an extremely strong enhancement of small perturbations takes place. As an example, effective three-electron interaction is investigated and found to play a significant role in the system. Chaotic properties of the eigenstates allow one to develop a statistical theory and predict probabilities of different processes in chaotic systems.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Universality in the onset of quantum chaos in many-body systems
    LeBlond, Tyler
    Sels, Dries
    Polkovnikov, Anatoli
    Rigol, Marcos
    PHYSICAL REVIEW B, 2021, 104 (20)
  • [2] Lyapunov exponent as a signature of dissipative many-body quantum chaos
    Garcia-Garcia, Antonio M.
    Verbaarschot, Jacobus J. M.
    Zheng, Jie-ping
    PHYSICAL REVIEW D, 2024, 110 (08)
  • [3] Quantum chaos in many-body systems: what can we learn from the Ce atom?
    Flambaum, VV
    Gribakina, AA
    Gribakin, GF
    Ponomarev, IV
    PHYSICA D, 1999, 131 (1-4): : 205 - 220
  • [4] Intrinsic quantum chaos and spectral fluctuations within the protactinium atom
    Naubereit, Pascal
    Studer, Dominik
    Viatkina, Anna V.
    Buchleitner, Andreas
    Dietz, Barbara
    Flambaum, Victor V.
    Wendt, Klaus
    PHYSICAL REVIEW A, 2018, 98 (02)
  • [5] How many particles make up a chaotic many-body quantum system?
    Zisling, Guy
    Santos, Lea F.
    Bar Lev, Yevgeny
    SCIPOST PHYSICS, 2021, 10 (04):
  • [6] Quantum Chaos, Random Matrices, and Irreversibility in Interacting Many-Body Quantum Systems
    Weidenmueller, Hans A.
    ENTROPY, 2022, 24 (07)
  • [7] Many-body quantum chaos in stroboscopically-driven cold atoms
    Dag, Ceren B.
    Mistakidis, Simeon I.
    Chan, Amos
    Sadeghpour, H. R.
    COMMUNICATIONS PHYSICS, 2023, 6 (01)
  • [8] Emergence of many-body quantum chaos via spontaneous breaking of unitarity
    Liao, Yunxiang
    Galitski, Victor
    PHYSICAL REVIEW B, 2022, 105 (14)
  • [9] Many-Body Quantum Chaos: Analytic Connection to Random Matrix Theory
    Kos, Pavel
    Ljubotina, Marko
    Prosen, Tomaz
    PHYSICAL REVIEW X, 2018, 8 (02):
  • [10] Many-body quantum chaos and actinide ions: Testing the predictions of random matrix theory with high-Z ions
    Sheil, J.
    PHYSICAL REVIEW A, 2018, 98 (02)