Multiple Pseudo-Plastic Appearance of the Dynamic Fracture in Quasi-Brittle Materials

被引:2
|
作者
Riganti, Gianmario [1 ]
Cadoni, Ezio [1 ]
机构
[1] Univ Appl Sci & Arts Southern Switzerland, DynaMat Lab, CH-6952 Canobbio, Switzerland
关键词
quasi-brittle material; DAMP model; damage propagation; material model; split Hopkinson bar; numerical simulation; HIGH-STRENGTH CONCRETE; RATE TENSILE BEHAVIOR; CRACK-PROPAGATION; MECHANICAL-PROPERTIES; NUMERICAL-SIMULATION; PLAIN CONCRETE; MATERIAL MODEL; UHPFRC; SIZE;
D O I
10.3390/ma13214976
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Understanding and simulating the dynamic response of quasi-brittle materials still remains as one of the most challenging issues in structural engineering. This paper presents the damage propagation material model (DAMP) developed in order to obtain reliable results for use in structural engineering practice. A brief overview focuses on the differences between fracture mechanics studies, and engineering material modelling is presented to highlight possible guideline improvements. An experimental dynamic test performed on ultra-high-performance concrete specimens was used to obtain evidence of the physical behaviour of brittle materials with respect to specimen size variations and, consequently, to verify the reliability of the material equations proposed. Two widely used material models (RHT and M72R3), as representatives of the classical brittle material models for structural purposes, and the proposed material model are compared. Here, we show how: (i) the multiple structural strength of brittle materials arises from the damage propagation process, (ii) there is no contradiction between fracture mechanics and the engineering approach once the velocity of damage propagation is chosen as fundamental material property and (iii) classical dynamic material models are intrinsically not objective with related loss of predictive capability. Finally, the original material model equation and the experimental strategy, dedicated to its extended verification, will be shown in order to increase the design predictiveness in the dynamic range considering structure and specimen size variations. The dynamic stress increasing factor (DIF), experimentally observed and widely recognised in literature as a fundamental concept for quasi-brittle material modelling, has been reviewed and decomposed in its geometrical and material dependencies. The new material model defines its DIF starting from the physical quantities of the damage propagation velocity applied to the test case boundary conditions. The resultant material model predictiveness results improved greatly, demonstrating its ability to model several dynamic events considering size and dynamic load variations with a unique material property set without showing contradictions between numerical and experimental approaches.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 50 条
  • [41] EFFECT OF THE SPATIAL INHOMOGENEITY OF FRACTURE STRENGTH ON FRACTURE PATTERN FOR QUASI-BRITTLE MATERIALS
    Clarke, Philip L.
    Abedi, Reza
    Bahmani, Bahador
    Acton, Katherine A.
    Baxter, Sarah C.
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2017, VOL 9, 2018,
  • [42] A KINETIC CRITERION FOR QUASI-BRITTLE FRACTURE
    HACK, JE
    CHEN, SP
    SROLOVITZ, DJ
    ACTA METALLURGICA, 1989, 37 (07): : 1957 - 1970
  • [43] QUASI-BRITTLE FRACTURE SYMPOSIUM - FOREWORD
    CHAN, KS
    GERBERICH, WW
    METALLURGICAL TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 1993, 24 (03): : 521 - 521
  • [44] Statistical kinetics of quasi-brittle fracture
    A. I. Malkin
    F. A. Kulikov-Kostyushko
    T. A. Shumikhin
    Technical Physics, 2008, 53 : 334 - 342
  • [45] Size effect on quasi-brittle fracture
    Hu, XZ
    Duan, K
    Third International Conference on Experimental Mechanics and Third Conference of the Asian-Committee-on-Experimental-Mechanics, Pts 1and 2, 2005, 5852 : 289 - 296
  • [46] A new specimen for mixed mode I/II fracture of brittle and quasi-brittle materials
    Li, Yifan
    Pavier, Martyn J.
    Coules, Harry
    1ST VIRTUAL EUROPEAN CONFERENCE ON FRACTURE - VECF1, 2020, 28 : 1140 - 1147
  • [47] Statistical kinetics of quasi-brittle fracture
    Malkin, A. I.
    Kulikov-Kostyushko, F. A.
    Shumikhin, T. A.
    TECHNICAL PHYSICS, 2008, 53 (03) : 334 - 342
  • [48] Statistical kinetics of quasi-brittle fracture
    A. I. Malkin
    F. A. Kulikov-Kostyushko
    T. A. Shumikhin
    Doklady Physical Chemistry, 2006, 406 : 33 - 37
  • [49] Statistical kinetics of quasi-brittle fracture
    Malkin, AI
    Kulikov-Kostyushko, FA
    Shumikhin, TA
    DOKLADY PHYSICAL CHEMISTRY, 2006, 406 (2) : 33 - 37
  • [50] FRACTURE ENERGY OF BRITTLE AND QUASI-BRITTLE FRACTAL CRACKS
    BORODICH, FM
    FRACTALS IN THE NATURAL AND APPLIED SCIENCES, 1994, 41 : 61 - 68