Mesoporous spinel manganese zinc ferrite for high-performance supercapacitors

被引:81
作者
Ismail, Fatma M. [1 ]
Ramadan, Mohamed [2 ]
Abdellah, Ahmed M. [2 ]
Ismail, Ibrahim [1 ]
Allam, Nageh K. [2 ]
机构
[1] Zewail City Sci & Technol, Renewable Energy Dept, Giza 12588, Egypt
[2] Amer Univ Cairo, Sch Sci & Engn, EML, New Cairo 11835, Egypt
关键词
Spinel; Mesoporous; Supercapacitor; Energy density; Power density; DOUBLE-LAYER CAPACITANCE; COBALT FERRITE; HYDROTHERMAL SYNTHESIS; FACILE SYNTHESIS; NANO-FLAKES; ONE-STEP; ELECTRODES; OXIDE; NANOPARTICLES; PSEUDOCAPACITANCE;
D O I
10.1016/j.jelechem.2018.04.002
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
We report on the synthesis of manganese zinc ferrite (MnZnFe2O4) nanoneedles via a simple one-pot coprecipitation method and their characterization using energy-dispersive spectroscopy (EDS), X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), high-resolution transmission electron microscope (HRTEM) and N-2 adsorption/desorption techniques. The electrochemical performance of MnZnFe2O4 nanoneedles-based supercapacitors was investigated, showing superior specific capacitance of 783 F g(-1), which is significantly higher than that reported for any ferrite material. Also, the spinel MnZnFe2O4 exhibits very high columbic efficiency and an excellent long-term stability. The fabricated asymmetric supercapacitor based on MnZnFe2O4 nanoneedles/activated carbon electrodes can deliver 15.8 Wh kg(-1) energy density at a power density of 899.7 W kg(-1). The contribution of the double layer capacitance was found to be only 3.14% of the total specific capacitance and mainly based on psuedocapacitance faradaic mechanism. Therefore, the fabricated MnZnFe2O4 electrode is a promising candidate for supercapacitor applications.
引用
收藏
页码:111 / 117
页数:7
相关论文
共 69 条
[21]   Gold nanoparticles decorated MnO2 nanowires for high performance supercapacitor [J].
Khandare, Lina ;
Terdale, Santosh .
APPLIED SURFACE SCIENCE, 2017, 418 :22-29
[22]   Chemical synthesis of spinel cobalt ferrite (CoFe2O4) nano-flakes for supercapacitor application [J].
Kumbhar, V. S. ;
Jagadale, A. D. ;
Shinde, N. M. ;
Lokhande, C. D. .
APPLIED SURFACE SCIENCE, 2012, 259 :39-43
[23]   Facile approach to prepare loose-packed NiO nano-flakes materials for supercapacitors [J].
Lang, Jun-Wei ;
Kong, Ling-Bin ;
Wu, Wei-Jin ;
Luo, Yong-Chun ;
Kang, Long .
CHEMICAL COMMUNICATIONS, 2008, (35) :4213-4215
[24]   Controlling electric double-layer capacitance and pseudocapacitance in heteroatom-doped carbons derived from hypercrosslinked microporous polymers [J].
Lee, Jet-Sing M. ;
Briggs, Michael E. ;
Hu, Chi-Chang ;
Cooper, Andrew I. .
NANO ENERGY, 2018, 46 :277-289
[25]   Differentiate the pseudocapacitance and double-layer capacitance contributions for nitrogen-doped reduced graphene oxide in acidic and alkaline electrolytes [J].
Lee, Ying-Hui ;
Chang, Kuo-Hsin ;
Hu, Chi-Chang .
JOURNAL OF POWER SOURCES, 2013, 227 :300-308
[26]   Vertically-aligned graphene@MnO nanosheets as binder-free high-performance electrochemical pseudocapacitor electrodes [J].
Liao, Qingyu ;
Li, Na ;
Cui, Hao ;
Wang, Chengxin .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (44) :13715-13720
[27]   New Energy Storage Option: Toward ZnCo2O4 Nanorods/Nickel Foam Architectures for High-Performance Supercapacitors [J].
Liu, Bin ;
Liu, Boyang ;
Wang, Qiufan ;
Wang, Xianfu ;
Xiang, Qingyi ;
Chen, Di ;
Shen, Guozhen .
ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (20) :10011-10017
[28]   Facile synthesis of large-area manganese oxide nanorod arrays as a high-performance electrochemical supercapacitor [J].
Lu, Xihong ;
Zheng, Dezhou ;
Zhai, Teng ;
Liu, Zhaoqing ;
Huang, Yunyun ;
Xie, Shilei ;
Tong, Yexiang .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (08) :2915-2921
[29]   Controlled synthesis of nanostructured molybdenum oxide electrodes for high performance supercapacitor devices [J].
Maheshwari, Nallappan ;
Muralidharan, Gopalan .
APPLIED SURFACE SCIENCE, 2017, 416 :461-469
[30]   Microwave-Mediated Synthesis for Improved Morphology and Pseudocapacitance Performance of Nickel Oxide [J].
Meher, Sumanta Kumar ;
Justin, P. ;
Rao, G. Ranga .
ACS APPLIED MATERIALS & INTERFACES, 2011, 3 (06) :2063-2073