Enzymatic biosynthesis and immobilization of polyprotein verified at the single-molecule level

被引:87
|
作者
Deng, Yibing [1 ]
Wu, Tao [1 ]
Wang, Mengdi [1 ]
Shi, Shengchao [1 ]
Yuan, Guodong [1 ]
Li, Xi [1 ]
Chong, Hanchung [2 ,3 ]
Wu, Bin [2 ,3 ]
Zheng, Peng [1 ]
机构
[1] Nanjing Univ, Sch Chem & Chem Engn, State Key Lab Coordinat Chem, Nanjing 210023, Jiangsu, Peoples R China
[2] Nanyang Technol Univ, Sch Biol Sci, 60 Nanyang Dr, Singapore 637551, Singapore
[3] Nanyang Technol Univ, NTU Inst Struct Biol, EMB 06-01,59 Nanyang Dr, Singapore 636921, Singapore
基金
中国国家自然科学基金;
关键词
FORCE SPECTROSCOPY; PROTEIN; TITIN; POLYMERIZATION; DYNAMICS; BOND;
D O I
10.1038/s41467-019-10696-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The recent development of chemical and bio-conjugation techniques allows for the engineering of various protein polymers. However, most of the polymerization process is difficult to control. To meet this challenge, we develop an enzymatic procedure to build polyprotein using the combination of a strict protein ligase OaAEP1 (Oldenlandia affinis asparaginyl endopeptidases 1) and a protease TEV (tobacco etch virus). We firstly demonstrate the use of OaAEP1-alone to build a sequence-uncontrolled ubiquitin polyprotein and covalently immobilize the coupled protein on the surface. Then, we construct a poly-metalloprotein, rubredoxin, from the purified monomer. Lastly, we show the feasibility of synthesizing protein polymers with rationally-controlled sequences by the synergy of the ligase and protease, which are verified by protein unfolding using atomic force microscopy-based single-molecule force spectroscopy (AFM-SMFS). Thus, this study provides a strategy for polyprotein engineering and immobilization.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Twist and Shout: Single-Molecule Mechanochemistry
    Li, Hongbin
    Walker, Gilbert C.
    ACS NANO, 2017, 11 (01) : 28 - 30
  • [32] Multiplex detection of lung cancer cells at the single-molecule level
    Hu, Juan
    Zhang, Chun-yang
    CHEMICAL COMMUNICATIONS, 2014, 50 (88) : 13581 - 13584
  • [33] Visualizing protein-DNA interactions at the single-molecule level
    Hilario, Jovencio
    Kowalczykowski, Stephen C.
    CURRENT OPINION IN CHEMICAL BIOLOGY, 2010, 14 (01) : 15 - 22
  • [34] Two-Level Conductance Fluctuations of a Single-Molecule Junction
    Neel, N.
    Kroeger, J.
    Berndt, R.
    NANO LETTERS, 2011, 11 (09) : 3593 - 3596
  • [35] Analyzing single-molecule manipulation experiments
    Calderon, Christopher R.
    Harris, Nolan C.
    Kiang, Ching-Hwa
    Cox, Dennis D.
    JOURNAL OF MOLECULAR RECOGNITION, 2009, 22 (05) : 356 - 362
  • [36] A perspective of the dynamic structure of the nucleus explored at the single-molecule level
    Dange, Thomas
    Joseph, Aviva
    Grunwald, David
    CHROMOSOME RESEARCH, 2011, 19 (01) : 117 - 129
  • [37] Kinetics of Photoinduced Reactions at the Single-Molecule Level: The KACB Method
    Kawai, Kiyohiko
    Maruyama, Atsushi
    CHEMISTRY-A EUROPEAN JOURNAL, 2020, 26 (35) : 7740 - 7746
  • [38] Mechanical Folding and Unfolding of Protein Barnase at the Single-Molecule Level
    Alemany, Anna
    Rey-Serra, Blanca
    Frutos, Silvia
    Cecconi, Ciro
    Ritort, Felix
    BIOPHYSICAL JOURNAL, 2016, 110 (01) : 63 - 74
  • [39] Determination of protein-protein interactions at the single-molecule level using optical tweezers
    Sanchez, Wendy N.
    Robeson, Luka
    Carrasco, Valentina
    Figueroa, Nataniel L.
    Burgos-Bravo, Francesca
    Wilson, Christian A. M.
    Casanova-Morales, Nathalie
    QUARTERLY REVIEWS OF BIOPHYSICS, 2022, 55
  • [40] Mechanically switching single-molecule fluorescence of GFP by unfolding and refolding
    Ganim, Ziad
    Rief, Matthias
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2017, 114 (42) : 11052 - 11056