Integration of fiber Bragg grating temperature sensors in plasma facing components of the WEST tokamak

被引:38
作者
Corre, Y. [1 ]
Laffont, G. [2 ]
Pocheau, C. [1 ]
Cotillard, R. [2 ]
Gaspar, J. [1 ]
Roussel, N. [2 ]
Firdaouss, M. [1 ]
Gardarein, J. -L. [3 ]
Guilhem, D. [1 ]
Missirlian, M. [1 ]
机构
[1] CEA, IRFM, F-13108 St Paul Les Durance, France
[2] CEA, LIST, F-91191 Gif Sur Yvette, France
[3] Aix Marseille Univ, CNRS, IUSTI UMR 7343, F-13013 Marseille, France
关键词
ASDEX UPGRADE; ITER; TECHNOLOGY; DIVERTOR;
D O I
10.1063/1.5024514
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Plasma Facing Components (PFC) temperature measurement is mandatory to ensure safe high power and long pulse tokamak operation. IR thermography systems which are widely used in magnetic fusions devices become challenged with the choice of tungsten as a PFC material in the I l'ER tokamak, mainly due to emissivity uncertainties and reflection issues in a hot environment. Embedded temperature measurements are foreseen to cross-check the IR thermography measurements. Fiber Bragg grating sensors are potentially of great interest for this application because they are immune to electromagnetic interference and allow the measurement of a large number of temperature spots on a single fiber. Four optical fiber temperature sensing probes, each of them including 11 regenerated fiber Bragg gratings equally spaced by 12.5 mm (equivalent to one ITER-like tungsten monoblock), have been specifically designed and manufactured for the WEST project (W-tungsten Environment and Steady State Tokamak). The four probes are embedded in W-coated graphite components at two different distances from the surface, 3.5 mm and 7 mm, to cover a wide range of temperatures up to 900 degrees C. This paper addresses the design and integration issues and the qualification and performance assessment performed in the laboratory. It also shows the first measurements of this new diagnostic achieved in a tokamak environment during baking of the machine and during early diverted plasma exposure. Published by AIP Publishing.
引用
收藏
页数:10
相关论文
共 18 条
[1]   Impact of reflections on the divertor and first wall temperature measurements from the ITER infrared imaging system [J].
Aumeunier, M. -H. ;
Kocan, M. ;
Reichle, R. ;
Gauthier, E. .
NUCLEAR MATERIALS AND ENERGY, 2017, 12 :1265-1269
[2]   The WEST project: Testing ITER divertor high heat flux component technology in a steady state tokamak environment [J].
Bucalossi, J. ;
Missirlian, M. ;
Moreau, P. ;
Samaille, F. ;
Tsitrone, E. ;
van Houtte, D. ;
Batal, T. ;
Bourdelle, C. ;
Chantant, M. ;
Corre, Y. ;
Courtois, X. ;
Delpech, L. ;
Doceul, L. ;
Douai, D. ;
Dougnac, H. ;
Faisse, F. ;
Fenzi, C. ;
Ferlay, F. ;
Firdaouss, M. ;
Gargiulo, L. ;
Garin, P. ;
Gil, C. ;
Grosman, A. ;
Guilhem, D. ;
Gunn, J. ;
Hernandez, C. ;
Keller, D. ;
Larroque, S. ;
Leroux, F. ;
Lipa, M. ;
Lotte, P. ;
Martinez, A. ;
Meyer, O. ;
Micolon, F. ;
Mollard, P. ;
Nardon, E. ;
Nouailletas, R. ;
Pilia, A. ;
Richou, M. ;
Salasca, S. ;
Travère, J. -M. .
FUSION ENGINEERING AND DESIGN, 2014, 89 (7-8) :907-912
[3]   Numerical modelling for divertor design of the WEST device with a focus on plasma-wall interactions [J].
Bufferand, H. ;
Ciraolo, G. ;
Marandet, Y. ;
Bucalossi, J. ;
Ghendrih, Ph. ;
Gunn, J. ;
Mellet, N. ;
Tamain, P. ;
Leybros, R. ;
Fedorczak, N. ;
Schwander, F. ;
Serre, E. .
NUCLEAR FUSION, 2015, 55 (05)
[4]   Status of the ITER full-tungsten divertor shaping and heat load distribution analysis [J].
Carpentier-Chouchana, S. ;
Hirai, T. ;
Escourbiac, F. ;
Durocher, A. ;
Fedosov, A. ;
Ferrand, L. ;
Firdaouss, M. ;
Kocan, M. ;
Kukushkin, A. S. ;
Jokinen, T. ;
Komarov, V. ;
Lehnen, M. ;
Merola, M. ;
Mitteau, R. ;
Pitts, R. A. ;
Stangeby, P. C. ;
Sugihara, M. .
PHYSICA SCRIPTA, 2014, T159
[5]   Empiricial scaling of inter-ELM power widths in ASDEX Upgrade and JET [J].
Eich, T. ;
Sieglin, B. ;
Scarabosio, A. ;
Herrmann, A. ;
Kallenbach, A. ;
Matthews, G. F. ;
Jachmich, S. ;
Brezinsek, S. ;
Rack, M. ;
Goldston, R. J. .
JOURNAL OF NUCLEAR MATERIALS, 2013, 438 :S72-S77
[6]   Operational limits on WEST inertial divertor sector during the early phase experiment [J].
Firdaouss, M. ;
Corre, Y. ;
Languille, P. ;
Greuner, H. ;
Autissier, E. ;
Desgranges, C. ;
Guilhem, D. ;
Gunn, J. P. ;
Lipa, M. ;
Missirlian, M. ;
Pascal, J-Y ;
Pocheau, C. ;
Richou, M. ;
Tsitrone, E. .
PHYSICA SCRIPTA, 2016, T167
[7]   Surface heat flux estimation with embedded fiber Bragg gratings measurements: Numerical study [J].
Gaspar, J. ;
Corre, Y. ;
Gardarein, J-L. ;
Firdaouss, M. ;
Guilhem, D. ;
Houry, M. ;
Laffont, G. ;
Le Niliot, C. ;
Missirlian, M. ;
Pocheau, C. ;
Rigollet, F. .
NUCLEAR MATERIALS AND ENERGY, 2017, 12 :1077-1081
[8]   Fiber Bragg grating technology fundamentals and overview [J].
Hill, KO ;
Meltz, G .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 1997, 15 (08) :1263-1276
[9]  
Hirai T., 2016, Nucl. Mater. Energy, V9, P616, DOI [10.1016/j.nme.2016.07.003, DOI 10.1016/J.NME.2016.07.003, 10.1016/J.NME.2016.07.003, DOI 10.1016/J.NME]
[10]   Progress of ITER vacuum vessel [J].
Ioki, K. ;
Bayon, A. ;
Choi, C. H. ;
Daly, E. ;
Dani, S. ;
Davis, J. ;
Giraud, B. ;
Gribov, Y. ;
Hamlyn-Harris, C. ;
Jun, C. ;
Levesy, B. ;
Kim, B. C. ;
Kuzmin, E. ;
Le Barbier, R. ;
Martinez, J. -M. ;
Pathak, H. ;
Preble, J. ;
Sa, J. W. ;
Terasawa, A. ;
Utin, Yu. ;
Wang, X. .
FUSION ENGINEERING AND DESIGN, 2013, 88 (6-8) :590-596