Water hammer mitigation via PDE-constrained optimization

被引:25
|
作者
Chen, Tehuan [1 ,2 ]
Xu, Chao [1 ,2 ]
Lin, Qun [3 ]
Loxton, Ryan [3 ]
Teo, Kok Lay [3 ]
机构
[1] Zhejiang Univ, State Key Lab Ind Control Technol, Hangzhou 310027, Zhejiang, Peoples R China
[2] Zhejiang Univ, Inst Cyber Syst & Control, Hangzhou 310027, Zhejiang, Peoples R China
[3] Curtin Univ, Dept Math & Stat, Perth, WA 6102, Australia
基金
中国国家自然科学基金; 国家高技术研究发展计划(863计划);
关键词
Water hammer; Hyperbolic PDEs; Control parameterization; Optimal boundary control; Method of lines; Variational method; NONLINEAR OPTIMAL-CONTROL; BOUNDARY CONTROL; OPEN CHANNELS; SYSTEMS; FLOW; STABILIZATION; WATERHAMMER; EQUATIONS; DESIGN;
D O I
10.1016/j.conengprac.2015.08.008
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper considers an optimal boundary control problem for fluid pipelines with terminal valve control. The goal is to minimize pressure fluctuation during valve closure, thus mitigating water hammer effects. We model the fluid flow by two coupled hyperbolic PDEs with given initial conditions and a boundary control governing valve actuation. To solve the optimal boundary control problem, we apply the control parameterization method to approximate the time-varying boundary control by a linear combination of basis functions, each of which depends on a set of decision parameters. Then, by using variational principles, we derive formulas for the gradient of the objective function (which measures pressure fluctuation) with respect to the decision parameters. Based on the gradient formulas obtained, we propose a gradient-based optimization method for solving the optimal boundary control problem. Numerical results demonstrate the capability of optimal boundary control to significantly reduce pressure fluctuation. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:54 / 63
页数:10
相关论文
共 50 条
  • [1] Algorithms for PDE-constrained optimization
    Herzog R.
    Kunisch K.
    GAMM Mitteilungen, 2010, 33 (02) : 163 - 176
  • [2] PDE-CONSTRAINED OPTIMIZATION FOR NUCLEAR MECHANICS
    Kesenci, Yekta
    Boquet-Pujadas, Aleix
    van Bodegraven, Emma
    Etienne-Manneville, Sandrine
    Re, Elisabeth Labruye
    Olivo-Marin, Jean-Christophe
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 2192 - 2195
  • [3] OPTIMAL SOLVERS FOR PDE-CONSTRAINED OPTIMIZATION
    Rees, Tyrone
    Dollar, H. Sue
    Wathen, Andrew J.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2010, 32 (01): : 271 - 298
  • [4] Pde-constrained optimization for advanced materials
    Leugering G̈.
    Stingl M.
    GAMM Mitteilungen, 2010, 33 (02) : 209 - 229
  • [5] Parallel algorithms for PDE-constrained optimization
    Akcelik, Volkan
    Biros, George
    Ghattas, Omar
    Hill, Judith
    Keyes, David
    Waanders, Bart van Bloemen
    PARALLEL PROCESSING FOR SCIENTIFIC COMPUTING, 2006, : 291 - 322
  • [6] A MESHFREE METHOD FOR A PDE-CONSTRAINED OPTIMIZATION PROBLEM
    Hoff, Daniel
    Wendland, Holger
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2021, 59 (04) : 1896 - 1917
  • [7] Domain decomposition in time for PDE-constrained optimization
    Barker, Andrew T.
    Stoll, Martin
    COMPUTER PHYSICS COMMUNICATIONS, 2015, 197 : 136 - 143
  • [8] PDE-Constrained Optimization: Matrix Structures and Preconditioners
    Dravins, Ivo
    Neytcheva, Maya
    LARGE-SCALE SCIENTIFIC COMPUTING (LSSC 2019), 2020, 11958 : 315 - 323
  • [9] PDE-constrained optimization with error estimation and control
    Hicken, J. E.
    Alonso, J. J.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 263 : 136 - 150
  • [10] PDE-constrained Optimization for Electroencephalographic Source Reconstruction
    M. S. Malovichko
    N. B. Yavich
    A. M. Razorenova
    V. I. Golubev
    N. A. Koshev
    Lobachevskii Journal of Mathematics, 2024, 45 (6) : 2875 - 2894