An oscillation of the solution for a nonlinear second-order stochastic differential equation

被引:0
作者
Komashynska, Iryna [1 ]
Al-Smadi, Mohammed [2 ]
Ateiwi, Ali [3 ]
Al E'damat, Ayed [3 ]
机构
[1] Univ Jordan, Fac Sci, Dept Math, Amman 11942, Jordan
[2] Al Balqa Appl Univ, Ajloun Coll, Dept Appl Sci, Ajloun 26816, Jordan
[3] Al Hussein Bin Talal Univ, Fac Sci, Dept Math, POB 20, Maan, Jordan
关键词
Oscillation; Stochastic differential equations; Zeros of solutions; Wiener process; Ito integral; CUBIC-SPLINES; STABILITY; SYSTEMS; MODELS;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we study the oscillatory properties for asymptotic behaviors of solutions of a class of nonlinear second-order stochastic Ito equations. Meanwhile, we investigate existence of zeros of its solutions with probability 1. Sufficient conditions for the oscillation and nonoscillation of solutions are obtained on the half-line [t(0), infinity) for every t(0) > 0.
引用
收藏
页码:860 / 868
页数:9
相关论文
共 33 条
  • [1] Construction of equivalent stochastic differential equation models
    Allen, Edward J.
    Allen, Linda J. S.
    Arciniega, Armando
    Greenwood, Priscilla E.
    [J]. STOCHASTIC ANALYSIS AND APPLICATIONS, 2008, 26 (02) : 274 - 297
  • [2] Allen LJS, 2010, An introduction to stochastic processes with applications to biology, V2nd
  • [3] [Anonymous], 2005, DISCRETE OSCILLATION, DOI DOI 10.1155/9789775945198
  • [4] [Anonymous], 1995, COLLOQ MATH-WARSAW
  • [5] APPLEBY J, 2007, INT J DIFFER EQU, V2, P139
  • [6] Appleby JAD, 2005, DYNAM SYST APPL, V14, P175
  • [7] Oscillation and non-oscillation in solutions of nonlinear stochastic delay differential equations
    Appleby, JAD
    Kelly, C
    [J]. ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2004, 9 : 106 - 118
  • [8] Ateiwi A.M., 2008, INT J APPL MATH, V21, P73
  • [9] Bica AM, 2007, J COMPUT ANAL APPL, V9, P43
  • [10] Caus VA, 2007, J COMPUT ANAL APPL, V9, P85