A complex parabolic type Monge-Ampere equation

被引:0
作者
Spiliotis, J
机构
关键词
Monge-Ampere; complex; first-initial; boundary; parabolic; stochastic integral; control;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The complex parabolic type Monge-Ampere equation we are dealing with is of the form (partial derivative u/partial derivative t) det[partial derivative(2)u/partial derivative z(i) <partial derivative(z)over bar (j)>] = f in B x (0, T), u = phi on Gamma, where B is the unit ball in C-d, d > 1, and Gamma is the parabolic boundary of B x (0, T). Solution u is proved unique in the class C ((B) over bar x [0, T]) boolean AND W-infinity,loc(2.1) (B x (0, T)).
引用
收藏
页码:265 / 282
页数:18
相关论文
共 15 条
  • [1] [Anonymous], 1975, Stochastic differential equations and applications
  • [2] BEDFORD E, 1976, INVENT MATH, V37
  • [3] EVANS LC, 1978, INDIANA U MATH J, V27
  • [4] GAVEAU B, 1977, J FUNCT ANAL, V25
  • [5] GAVEAU B, 1978, B SCI MATH4, P102
  • [6] Krylov N. V., 1980, Controlled Diffusion Processes, V14
  • [7] KRYLOV NV, 1976, SIB MAT ZH, V17
  • [8] KRYLOV NV, 1990, MATH USSR IZV, V34
  • [9] KRYLOV NV, 1971, MATH USSR IZV, V5
  • [10] KRYLOV NV, 1992, MATH USSR IZV, V19