Group classification of the time-fractional Kaup-Kupershmidt equation

被引:20
作者
Jafari, H. [1 ,2 ]
Kadkhoda, N. [3 ]
Azadi, M. [1 ]
Yaghoubi, M. [4 ]
机构
[1] Univ Mazandaran, Dept Math & Comp Sci, Babol Sar, Iran
[2] Univ South Africa, Dept Math Sci, ZA-0003 Unisa, South Africa
[3] Bozorgmehr Univ Qaenat, Fac Basic Sci, Dept Math, Qaenat, Iran
[4] Payame Noor Univ, Dept Math, POB 19395-3697, Tehran, Iran
关键词
Fractional differential equation; Lie group; Time-fractional Kaup-Kupershmidt equation; Rieman-Liouville derivative; Group-invariant solutions; LIE GROUP; DERIVATIVES;
D O I
10.24200/sci.2017.4034
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Finding the symmetries of the nonlinear fractional differential equations plays an important role in study of fractional differential equations. In this manuscript, firstly, we are interested in finding the Lie point symmetries of the time-fractional Kaup-Kupershmidt equation. Afterwards, by using the infinitesimal generators, we determine their corresponding invariant solutions. (C) 2017 Sharif University of Technology. All rights reserved.
引用
收藏
页码:302 / 307
页数:6
相关论文
共 38 条
  • [1] [Anonymous], 1993, GRADUATE TEXTS MATH
  • [2] [Anonymous], 2010, COMMUN FRAC CALC
  • [3] [Anonymous], 1996, HDB LIE GROUP ANAL D
  • [4] [Anonymous], 2012, Series on Complexity, Nonlinearity and Chaos, DOI 10.1142/10044
  • [5] [Anonymous], 1974, The fractional calculus theory and applications of differentiation and integration to arbitrary order, DOI DOI 10.1016/S0076-5392(09)60219-8
  • [6] [Anonymous], 1994, CRC HDB LIE GROUP AN
  • [7] [Anonymous], 2006, Journal of the Electrochemical Society
  • [8] [Anonymous], HDB LIE GROUP ANAL D
  • [9] [Anonymous], 1993, THEORY APPL
  • [10] [Anonymous], 1982, GROUP ANAL DIFFERENT, DOI DOI 10.1016/C2013-0-07470-1