Electrical resistance changes during exposure to low temperature measure chilling and freezing tolerance in olive tree (Olea europaea L.) plants

被引:53
作者
Mancuso, S [1 ]
机构
[1] Univ Florence, Dipartimento Ortoflorofrutticoltura, I-50144 Florence, Italy
关键词
Olea europaea; chilling tolerance; critical temperature; freezing temperature; electrical resistance; membrane potential; screening;
D O I
10.1046/j.1365-3040.2000.00540.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Electrical resistance changes in different organs of four olive tree (Olea europaea L.) varieties, characterized by different tolerance to chilling and freezing, were examined, during exposure to low temperature. Apparent critical temperatures (CT) and freezing temperatures (T-fr) were identified on the basis of the electrical resistance changes. Both temperatures were lower for the more chilling-tolerant genotypes. From the apparent critical temperatures, the absolute critical temperature (CTabs) and the time delay of the chilling signal transduction process were calculated. In shoots, CTabs varied from 8.8 degrees C for Ascolana (chilling-tolerant variety) to 13.6 degrees C for Coratina (chilling-sensitive variety). The magnitude of the transduction time was very similar (about 2 min) for the three genotypes that are more sensitive to chilling, whereas it was significantly higher (about 3 min) for the most tolerant genotype. Different freezing temperatures were observed for different organs. It would appear from this experiment that the order of sensitivity is roots > leaves > shoots > vegetative buds. Accord was found between the absolute critical temperature of electrical resistance and the critical temperature of membrane potential. The occurrence of electrical resistance changes in the tissues of the olive trees exposed to low temperature suggests the use of this experimental procedure as a quick, easy and non-destructive tool to screen plant tissues for chilling tolerance. The strong dependence of the electrical resistance on low temperature, and the critical temperature of around 10 degrees C, can yield interesting information about the lowest thermal limits for the continuation of normal physiological processes and therefore about the adaptability of plants to particular environments.
引用
收藏
页码:291 / 299
页数:9
相关论文
共 28 条
[1]   CHARACTERIZATION OF CHILLING EFFECTS ON PHOTOSYNTHETIC PERFORMANCE OF MAIZE CROPS DURING EARLY-SEASON GROWTH USING CHLOROPHYLL FLUORESCENCE [J].
ANDREWS, JR ;
FRYER, MJ ;
BAKER, NR .
JOURNAL OF EXPERIMENTAL BOTANY, 1995, 46 (290) :1195-1203
[2]  
[Anonymous], ECOLOGICAL STUDIES
[3]  
Bowers Maynard C., 1994, P391
[4]  
BRAVO FP, 1981, PLANT PHYSIOL, V67, P815
[5]   COLD-ACCLIMATION INCREASES TOLERANCE OF ACTIVATED OXYGEN IN WINTER CEREALS [J].
BRIDGER, GM ;
YANG, W ;
FALK, DE ;
MCKERSIE, BD .
JOURNAL OF PLANT PHYSIOLOGY, 1994, 144 (02) :235-240
[6]  
Cole K. S., 1968, MEMBRANES IONS IMPUL
[7]  
HAVAUX M, 1987, PLANT PHYSIOL BIOCH, V25, P735
[9]   FREE-RADICAL AND FREEZING-INJURY TO CELL-MEMBRANES OF WINTER-WHEAT [J].
KENDALL, EJ ;
MCKERSIE, BD .
PHYSIOLOGIA PLANTARUM, 1989, 76 (01) :86-94
[10]  
LARCHER W, 1970, OECOLOG PLANTAR, V5, P267