Current controller design for DFIG-based wind turbines using state feedback control

被引:24
|
作者
Abo-Khalil, Ahmed G. [1 ,2 ]
Alghamdi, Ali [1 ]
Tlili, I. [3 ]
Eltamaly, Ali M. [4 ,5 ]
机构
[1] Majmaah Univ, Dept Elect Engn, Al Majmaah 11952, Saudi Arabia
[2] Assiut Univ, Dept Elect Engn, Assiut, Egypt
[3] Majmaah Univ, Dept Mech & Ind Engn, Al Majmaah 11952, Saudi Arabia
[4] Ing Saud Univ, Sustainable Energy Technol Ctr, Riyadh 11421, Saudi Arabia
[5] Mansoura Univ, Dept Elect Engn, Mansoura, Egypt
关键词
electric current control; rotors; control system synthesis; wind turbines; transient response; asynchronous generators; stators; feedforward; state feedback; robust control; power generation control; current controller design; state feedback control; doubly-fed induction generators; wind energy conversion systems; robust controllers; system stability; conventional vector control configurations; proportional-integral controllers; multivariable state feedback current controller; multivariable state feedback controllers; multivariable system; feedforward control; DFIG; feedforward component; GENERATION SYSTEM; CONTROL STRATEGY; CONVERTER; MODEL;
D O I
10.1049/iet-rpg.2018.6030
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Doubly-fed induction generators (DFIGs) are widely used in wind energy conversion systems. The dynamic features of DFIGs make it important to focus on designing high-performance control schemes. However, the dynamic characteristics of such generators depend on nonlinear parameters, such as stator flux, stator current, and rotor current, which increase overall system complexity. Therefore, robust controllers must be implemented with the ability to support the dynamic frequencies of wind energy to ensure system stability. Conventional vector control configurations that use proportional-integral controllers have various drawbacks, such as parameter tuning difficulties, mediocre dynamic performance, and reduced robustness. In this study, improving DFIG dynamics by applying a multivariable state feedback current controller with a feedforward component to improve the steady-state and transient characteristics of the controller has been introduced and discussed. Multivariable state feedback controllers are proposed to replace the proportional-integral controllers on both the rotor and grid sides. The proposed controller is designed using a multivariable system and feedforward control for input reference and incorporating disturbances into the control equations for fast transient responses. To demonstrate the advantages of this controller, experimental studies are presented for both the transient and steady states.
引用
收藏
页码:1938 / 1949
页数:12
相关论文
共 50 条
  • [1] Unbalanced Control System Design for DFIG-Based Wind Turbines
    Yang, Shuying
    Zhan, Long
    Huang, Changxi
    Xie, Zhen
    2012 POWER ENGINEERING AND AUTOMATION CONFERENCE (PEAM), 2012, : 15 - 18
  • [2] A comprehensive sensorless control of DFIG-based wind turbines
    Abedinzadeh, Taher
    Tohidi, Sajjad
    COMPEL-THE INTERNATIONAL JOURNAL FOR COMPUTATION AND MATHEMATICS IN ELECTRICAL AND ELECTRONIC ENGINEERING, 2016, 35 (01) : 27 - 43
  • [3] Model predictive control of DFIG-based wind turbines
    Kaneko, Akira
    Hara, Naoyuki
    Konishi, Keiji
    2012 AMERICAN CONTROL CONFERENCE (ACC), 2012, : 2264 - 2269
  • [4] Controller Design for TCSC using Observed-State Feedback Method to Damp SSR in DFIG-Based Wind Farms
    Mohammadpour, Hossein Ali
    Siegers, Jonathan
    Santi, Enrico
    2015 THIRTIETH ANNUAL IEEE APPLIED POWER ELECTRONICS CONFERENCE AND EXPOSITION (APEC 2015), 2015, : 2993 - 2998
  • [5] Heightened state-feedback predictive control for DFIG-based wind turbines to enhance its LVRT performance
    Taveiros, F. E., V
    Barros, L. S.
    Costa, F. B.
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2019, 104 : 943 - 956
  • [6] Comparison of Inertia Control Methods for DFIG-based Wind Turbines
    Zhang, Zhiheng
    Wang, Yi
    Li, Heming
    Su, Xiaoqing
    2013 IEEE ECCE ASIA DOWNUNDER (ECCE ASIA), 2013, : 960 - 964
  • [7] Modeling, Analysis and Parameters Design of Rotor Current Control in DFIG-based Wind Turbines for Dynamic Performance Optimizing
    Chang, Yuanzhu
    Hu, Jiabing
    2017 IEEE ENERGY CONVERSION CONGRESS AND EXPOSITION (ECCE), 2017, : 3303 - 3308
  • [8] High Voltage Ride-through Control Method for DFIG-based Wind Turbines Based on Resonant Controller
    Song, Peng
    Zhang, Yangfan
    Bai, Kai
    Liu, Jingbo
    Liu, Hui
    Wu, Yuhui
    2016 IEEE INTERNATIONAL CONFERENCE ON POWER AND RENEWABLE ENERGY (ICPRE), 2016, : 67 - 71
  • [9] Supplemental Control for System Frequency Support of DFIG-Based Wind Turbines
    Abdeen, Mohamed
    Sayyed, Muhammad
    Luis Dominguez-Garcia, Jose
    Kamel, Salah
    IEEE ACCESS, 2022, 10 (69364-69372): : 69364 - 69372
  • [10] Black Start with DFIG-based Wind Turbines Using Improved Virtual Synchronous Control
    Zhu, Lingyan
    Pan, Zaiping
    Xu, Guodong
    2018 21ST INTERNATIONAL CONFERENCE ON ELECTRICAL MACHINES AND SYSTEMS (ICEMS), 2018, : 1013 - 1018