Uncertainty quantification for plant disease detection using Bayesian deep learning

被引:73
|
作者
Hernandez, S. [1 ,2 ]
Lopez, Juan L. [2 ]
机构
[1] Univ Catolica Maule, Lab Procesamiento Informac Geoespacial, Maule, Chile
[2] Univ Catolica Maule, Ctr Innovac Ingn Aplicada, Maule, Chile
关键词
Bayesian deep learning; Plant disease detection; Deep learning; SEVERITY; PATTERN;
D O I
10.1016/j.asoc.2020.106597
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Climate change is having an enormous impact on crop production in Latin America and the Caribbean. This problem not only concerns the volume of crop production but also the quality and safety of the food industry. Several research studies have proposed deep learning for plant disease detection. However, there is little information about the confidence of the prediction on unseen samples. Therefore, uncertainty in models of plant disease detection is required for effective crop management. In particular, uncertainty arising from sample selection bias makes it difficult to scale automatic plant disease detection systems to production. In this paper, we develop a probabilistic programming approach for plant disease detection using state-of-the-art Bayesian deep learning techniques and the uncertainty as a misclassification measurement. The results show that Bayesian inference achieves classification performance that is comparable to the standard optimization procedures for fine-tuning deep learning models. At the same time, the proposed method approximates the posterior density for the plant disease detection problem and quantify the uncertainty of the predictions for out-of-sample instances. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Plant Disease Detection and Classification by Deep Learning
    Saleem, Muhammad Hammad
    Potgieter, Johan
    Arif, Khalid Mahmood
    PLANTS-BASEL, 2019, 8 (11):
  • [22] Real-Time Plant Disease Dataset Development and Detection of Plant Disease Using Deep Learning
    Joseph, Diana Susan
    Pawar, Pranav M.
    Chakradeo, Kaustubh
    IEEE ACCESS, 2024, 12 : 16310 - 16333
  • [23] Uncertainty quantification in super-resolution guided wave array imaging using a variational Bayesian deep learning approach
    Song, Homin
    Yang, Yongchao
    NDT & E INTERNATIONAL, 2023, 133
  • [24] Performance evaluation of plant leaf disease detection using deep learning models
    Singh, Gulbir
    Yogi, Kuldeep Kumar
    ARCHIVES OF PHYTOPATHOLOGY AND PLANT PROTECTION, 2023, 56 (03) : 209 - 233
  • [25] Adaptive knowledge transfer using federated deep learning for plant disease detection
    Hari, Pragya
    Singh, Maheshwari Prasad
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2025, 229
  • [26] Machine Learning and Deep Learning for Plant Disease Classification and Detection
    Balafas, Vasileios
    Karantoumanis, Emmanouil
    Louta, Malamati
    Ploskas, Nikolaos
    IEEE ACCESS, 2023, 11 : 114352 - 114377
  • [27] Internet of Things Assisted Plant Disease Detection and Crop Management Using Deep Learning for Sustainable Agriculture
    Al-Shahari, Eman A.
    Aldehim, Ghadah
    Aljebreen, Mohammed
    Saad Alqurni, Jehad
    Salama, Ahmed S.
    Abdelbagi, Sitelbanat
    IEEE ACCESS, 2025, 13 : 3512 - 3520
  • [28] Plant disease classification using deep learning
    Akshai, K. P.
    Anitha, J.
    ICSPC'21: 2021 3RD INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATION (ICPSC), 2021, : 407 - 411
  • [29] Using Bayesian Deep Learning to Capture Uncertainty for Residential Net Load Forecasting
    Sun, Mingyang
    Zhang, Tingqi
    Wang, Yi
    Strbac, Goran
    Kang, Chongqing
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2020, 35 (01) : 188 - 201
  • [30] Trustworthy Bayesian deep learning framework for uncertainty quantification and confidence calibration: Application in machinery fault diagnosis
    Li, Hao
    Jiao, Jinyang
    Liu, Zongyang
    Lin, Jing
    Zhang, Tian
    Liu, Hanyang
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2025, 255