Porous amorphous silicon film anodes for high-capacity and stable all-solid-state lithium batteries

被引:116
作者
Sakabe, Junichi [1 ,5 ]
Ohta, Narumi [1 ,2 ,3 ]
Ohnishi, Tsuyoshi [1 ,2 ,3 ]
Mitsuishi, Kazutaka [2 ,4 ]
Takada, Kazunori [1 ,2 ,3 ]
机构
[1] Natl Inst Mat Sci, Ctr Green Res Energy & Environm Mat, 1-1 Namiki, Tsukuba, Ibaraki 3050044, Japan
[2] Natl Inst Mat Sci, Global Res Ctr Environm & Energy Based Nanomat Sc, 1-1 Namiki, Tsukuba, Ibaraki 3050044, Japan
[3] Natl Inst Mat Sci, NIMS TOYOTA Mat Ctr Excellence Sustainable Mobil, 1-1 Namiki, Tsukuba, Ibaraki 3050044, Japan
[4] Natl Inst Mat Sci, Res Ctr Adv Measurement & Characterisat, 1-2-1 Sengen, Tsukuba, Ibaraki 3050047, Japan
[5] Chuo Univ, Fac Sci & Engn, Dept Appl Chem, Bunkyo Ku, 1-13-27 Kasuga, Tokyo 1128551, Japan
来源
COMMUNICATIONS CHEMISTRY | 2018年 / 1卷
关键词
SITU TEM; IN-SITU; ELECTROLYTE; LITHIATION;
D O I
10.1038/s42004-018-0026-y
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Owing to its high theoretical capacity of similar to 4200 mAh g(-1) and low electrode potential (<0.35 V vs. Li+/Li), utilising silicon as anode material can boost the energy density of rechargeable lithium batteries. Nevertheless, the volume change (similar to 300%) in silicon during lithiation/delithiation makes stable cycling challenging. Since some of the capacity fading mechanisms do not function in solid electrolytes, silicon anodes exhibit better cycling performance in solid electrolytes than liquids. Nonetheless, capacity can fade rapidly because of the difficulties in maintaining mechanical integrity in thick/bulky electrodes, especially when high active material loading is employed to deliver practically useful areal capacity. By contrast, silicon nanostructures can relieve deformation-induced stress and enhance cycling performance. Here we report enhanced cycling performances achieved using nanostructured silicon films and inorganic solid electrolyte and show that amorphous porous silicon films maintain high capacity upon cycling (2962 mAh g(-1) and 2.19 mAh cm(-2) after 100 cycles).
引用
收藏
页数:9
相关论文
共 22 条
[1]   High performance silicon-based anodes in solid-state lithium batteries [J].
Cervera, Rinlee B. ;
Suzuki, Naoki ;
Ohnishi, Tsuyoshi ;
Osada, Minoru ;
Mitsuishi, Kazutaka ;
Kambara, Takayoshi ;
Takada, Kazunori .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (02) :662-666
[2]   Periodic porous silicon thin films with interconnected channels as durable anode materials for lithium ion batteries [J].
Cheng, Hua ;
Xiao, Ran ;
Bian, Haidong ;
Li, Zhe ;
Zhan, Yawen ;
Tsang, Chun Kwan ;
Chung, C. Y. ;
Lu, Zhouguang ;
Li, Yang Yang .
MATERIALS CHEMISTRY AND PHYSICS, 2014, 144 (1-2) :25-30
[3]   A new bottom-up methodology to produce silicon layers with a closed porosity nanostructure and reduced refractive index [J].
Godinho, V. ;
Caballero-Hernandez, J. ;
Jamon, D. ;
Rojas, T. C. ;
Schierholz, R. ;
Garcia-Lopez, J. ;
Ferrer, F. J. ;
Fernandez, A. .
NANOTECHNOLOGY, 2013, 24 (27)
[4]   Characterization of Li2S-P2S5 glass-ceramics as a solid electrolyte for lithium secondary batteries [J].
Hayashi, A ;
Hama, S ;
Mizuno, F ;
Tadanaga, K ;
Minami, T ;
Tatsumisago, M .
SOLID STATE IONICS, 2004, 175 (1-4) :683-686
[5]   Shape evolution of patterned amorphous and polycrystalline silicon microarray thin film electrodes caused by lithium insertion and extraction [J].
He, Yu ;
Yu, Xiqian ;
Li, Geng ;
Wang, Rui ;
Li, Hong ;
Wang, Yeliang ;
Gao, Hongjun ;
Huang, Xuejie .
JOURNAL OF POWER SOURCES, 2012, 216 :131-138
[6]   Lithium alloy negative electrodes [J].
Huggins, RA .
JOURNAL OF POWER SOURCES, 1999, 81 :13-19
[7]   High-power all-solid-state batteries using sulfide superionic conductors [J].
Kato, Yuki ;
Hori, Satoshi ;
Saito, Toshiya ;
Suzuki, Kota ;
Hirayama, Masaaki ;
Mitsui, Akio ;
Yonemura, Masao ;
Iba, Hideki ;
Kanno, Ryoji .
NATURE ENERGY, 2016, 1
[8]   Three-Dimensional Porous Silicon Particles for Use in High-Performance Lithium Secondary Batteries [J].
Kim, Hyunjung ;
Han, Byunghee ;
Choo, Jaebum ;
Cho, Jaephil .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (52) :10151-10154
[9]   Silicon-based materials as high capacity anodes for next generation lithium ion batteries [J].
Liang, Bo ;
Liu, Yanping ;
Xu, Yunhua .
JOURNAL OF POWER SOURCES, 2014, 267 :469-490
[10]   Size-Dependent Fracture of Silicon Nanoparticles During Lithiation [J].
Liu, Xiao Hua ;
Zhong, Li ;
Huang, Shan ;
Mao, Scott X. ;
Zhu, Ting ;
Huang, Jian Yu .
ACS NANO, 2012, 6 (02) :1522-1531