Ensemble of Minimal Learning Machines for Pattern Classification

被引:11
|
作者
Paiva Mesquita, Diego Parente [1 ]
Pordeus Gomes, Joao Paulo [1 ]
Souza Junior, Amauri Holanda [2 ]
机构
[1] Fed Inst Ceara, Dept Comp Sci, Fortaleza, Ceara, Brazil
[2] Fed Inst Ceara, Dept Comp Sci, Maracanau, Ceara, Brazil
关键词
D O I
10.1007/978-3-319-19222-2_12
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The use of ensemble methods for pattern classification have gained attention in recent years mainly due to its improvements on classification rates. This paper evaluates ensemble learning methods using the Minimal Learning Machines (MLM), a recently proposed supervised learning algorithm. Additionally, we introduce an alternative output estimation procedure to reduce the complexity of the standard MLM. The proposed methods are evaluated on real datasets and compared to several state-of-the-art classification algorithms.
引用
收藏
页码:142 / 152
页数:11
相关论文
共 50 条
  • [41] PATTERN CLASSIFICATION BY LEARNING
    TANAKA, K
    BULLETIN OF MATHEMATICAL STATISTICS, 1971, 14 (3-4): : 13 - &
  • [42] Nonparallel Support Vector Machines for Pattern Classification
    Tian, Yingjie
    Qi, Zhiquan
    Ju, Xuchan
    Shi, Yong
    Liu, Xiaohui
    IEEE TRANSACTIONS ON CYBERNETICS, 2014, 44 (07) : 1067 - 1079
  • [43] Fuzzy support vector machines for pattern classification
    Inoue, T
    Abe, S
    IJCNN'01: INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-4, PROCEEDINGS, 2001, : 1449 - 1454
  • [44] Twin support vector machines for pattern classification
    Jayadeva
    Khemchandani, R.
    Chandra, Suresh
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2007, 29 (05) : 905 - 910
  • [45] Additive support vector machines for pattern classification
    Doumpos, Michael
    Zopounidis, Constantin
    Golfinopoulou, Vassiliki
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2007, 37 (03): : 540 - 550
  • [46] K-winner machines for pattern classification
    Ridella, S
    Rovetta, S
    Zunino, R
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2001, 12 (02): : 371 - 385
  • [47] RFSEN-ELM: SELECTIVE ENSEMBLE OF EXTREME LEARNING MACHINES USING ROTATION FOREST FOR IMAGE CLASSIFICATION
    Zhou, Z.
    Chen, J.
    Song, Y.
    Zhu, Z.
    Liu, X.
    NEURAL NETWORK WORLD, 2017, 27 (05) : 499 - 517
  • [48] COMMENTS ON AN ENSEMBLE AVERAGE CLASSIFIER FOR PATTERN-RECOGNITION MACHINES
    CHEN, CC
    DUBES, RC
    JAIN, AK
    PATTERN RECOGNITION, 1990, 23 (06) : 669 - 669
  • [49] Efficient Minimal Learning Machines with Reject Option
    de Oliveira, Adonias C.
    Gomes, Joao Paulo P.
    Rocha Neto, Ajalmar R.
    de Souza Junior, Amauri H.
    PROCEEDINGS OF 2016 5TH BRAZILIAN CONFERENCE ON INTELLIGENT SYSTEMS (BRACIS 2016), 2016, : 397 - 402
  • [50] Random ensemble learning for EEG classification
    Hosseini, Mohammad-Parsa
    Pompili, Dario
    Elisevich, Kost
    Soltanian-Zadeh, Hamid
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 2018, 84 : 146 - 158