TENSOR METHODS FOR MINIMIZING CONVEX FUNCTIONS WITH HOLDER CONTINUOUS HIGHER-ORDER DERIVATIVES

被引:11
作者
Grapiglia, G. N. [1 ]
Nesterov, Yu. [2 ]
机构
[1] Univ Fed Parana, Dept Matemat, Ctr Politecn, BR-81531980 Curitiba, Parana, Brazil
[2] Catholic Univ Louvain UCL, Ctr Operat Res & Econometr CORE, B-1348 Louvain La Neuve, Belgium
基金
欧洲研究理事会;
关键词
unconstrained minimization; high-order methods; tensor methods; Holder condition; worst-case global complexity bounds; REGULARIZED NEWTON METHODS; CUBIC REGULARIZATION; OPTIMIZATION; COMPLEXITY;
D O I
10.1137/19M1259432
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study p-order methods for unconstrained minimization of convex functions that are p-times differentiable (p >= 2) with nu-Holder continuous pth derivatives. We propose tensor schemes with and without acceleration. For the schemes without acceleration, we establish iteration complexity bounds of O (epsilon(-1/(p+nu-1))) for reducing the functional residual below a given epsilon is an element of (0, 1). Assuming that nu is known, we obtain an improved complexity bound of O (epsilon(-1/(P+nu))) for the corresponding accelerated scheme. For the case in which nu is unknown, we present a universal accelerated tensor scheme with iteration complexity of O (epsilon(-P/[(P+1)(P+nu-1)])). A lower complexity bound of O (epsilon(-2/[3(P+nu)-2])) is also obtained for this problem class.
引用
收藏
页码:2750 / 2779
页数:30
相关论文
共 17 条
[1]   Oracle complexity of second-order methods for smooth convex optimization [J].
Arjevani, Yossi ;
Shamir, Ohad ;
Shiff, Ron .
MATHEMATICAL PROGRAMMING, 2019, 178 (1-2) :327-360
[2]  
Baes M., 2009, OPTIMIZATION ONLINE
[3]  
Banach S., 1938, Studia Math., V7, P36
[4]   Worst-case evaluation complexity for unconstrained nonlinear optimization using high-order regularized models [J].
Birgin, E. G. ;
Gardenghi, J. L. ;
Martinez, J. M. ;
Santos, S. A. ;
Toint, Ph. L. .
MATHEMATICAL PROGRAMMING, 2017, 163 (1-2) :359-368
[5]   Tensor methods for large, sparse unconstrained optimization [J].
Bouaricha, A .
SIAM JOURNAL ON OPTIMIZATION, 1997, 7 (03) :732-756
[6]   UNIVERSAL REGULARIZATION METHODS: VARYING THE POWER, THE SMOOTHNESS AND THE ACCURACY [J].
Cartis, Coralia ;
Gould, Nick, I ;
Toint, Philippe L. .
SIAM JOURNAL ON OPTIMIZATION, 2019, 29 (01) :595-615
[7]   COMPLEXITY OF PARTIALLY SEPARABLE CONVEXLY CONSTRAINED OPTIMIZATION WITH NON-LIPSCHITZIAN SINGULARITIES [J].
Chen, Xiaojun ;
Toint, Ph L. ;
Wang, H. .
SIAM JOURNAL ON OPTIMIZATION, 2019, 29 (01) :874-903
[8]   On inexact solution of auxiliary problems in tensor methods for convex optimization [J].
Grapiglia, G. N. ;
Nesterov, Yu. .
OPTIMIZATION METHODS & SOFTWARE, 2021, 36 (01) :145-170
[9]   REGULARIZED NEWTON METHODS FOR MINIMIZING FUNCTIONS WITH HOLDER CONTINUOUS HESSIANS [J].
Grapiglia, G. N. ;
Nesterov, Y. U. .
SIAM JOURNAL ON OPTIMIZATION, 2017, 27 (01) :478-506
[10]   ACCELERATED REGULARIZED NEWTON METHODS FOR MINIMIZING COMPOSITE CONVEX FUNCTIONS [J].
Grapiglia, Geovani N. ;
Nesterov, Yurii .
SIAM JOURNAL ON OPTIMIZATION, 2019, 29 (01) :77-99