Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach

被引:3756
作者
Aerts, Hugo J. W. L. [1 ,2 ,3 ,4 ]
Velazquez, Emmanuel Rios [1 ,2 ]
Leijenaar, Ralph T. H. [1 ]
Parmar, Chintan [1 ,2 ]
Grossmann, Patrick [2 ]
Cavalho, Sara [1 ]
Bussink, Johan [5 ]
Monshouwer, Rene [5 ]
Haibe-Kains, Benjamin [6 ,7 ]
Rietveld, Derek [8 ]
Hoebers, Frank [1 ]
Rietbergen, Michelle M. [9 ]
Leemans, C. Rene [9 ]
Dekker, Andre [1 ]
Quackenbush, John [4 ]
Gillies, Robert J. [10 ]
Lambin, Philippe [1 ]
机构
[1] Maastricht Univ, Res Inst GROW, Dept Radiat Oncol MAASTRO, NL-6229 ET Maastricht, Netherlands
[2] Harvard Univ, Sch Med, Brigham & Womens Hosp, Dana Farber Canc Inst,Dept Radiat Oncol, Boston, MA 02215 USA
[3] Harvard Univ, Sch Med, Brigham & Womens Hosp, Dana Farber Canc Inst,Dept Radiol, Boston, MA 02215 USA
[4] Dana Farber Canc Inst, Dept Biostat & Computat Biol, Boston, MA 02115 USA
[5] Radboud Univ Nijmegen, Med Ctr, Dept Radiat Oncol, NL-6500 HB Nijmegen, Netherlands
[6] Univ Toronto, Princess Margaret Canc Ctr, Univ Hlth Network, Toronto, ON M5G 1L7, Canada
[7] Univ Toronto, Dept Med Biophys, Toronto, ON M5G 1L7, Canada
[8] Vrije Univ Amsterdam, Med Ctr, Dept Radiat Oncol, NL-1081 HZ Amsterdam, Netherlands
[9] Vrije Univ Amsterdam, Med Ctr, Dept Otolaryngol Head & Neck Surg, NL-1081 HZ Amsterdam, Netherlands
[10] H Lee Moffitt Canc Ctr & Res Inst, Dept Canc Imaging & Metab, Tampa, FL 33612 USA
关键词
CELL LUNG-CANCER; HETEROGENEITY; VARIABILITY; EVOLUTION; RECIST; STAGE;
D O I
10.1038/ncomms5006
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
uman cancers exhibit strong phenotypic differences that can be visualized noninvasively by medical imaging. Radiomics refers to the comprehensive quantification of tumour phenotypes by applying a large number of quantitative image features. Here we present a radiomic analysis of 440 features quantifying tumour image intensity, shape and texture, which are extracted from computed tomography data of 1,019 patients with lung or head-and-neck cancer. We find that a large number of radiomic features have prognostic power in independent data sets of lung and head-and-neck cancer patients, many of which were not identified as significant before. Radiogenomics analysis reveals that a prognostic radiomic signature, capturing intratumour heterogeneity, is associated with underlying gene-expression patterns. These data suggest that radiomics identifies a general prognostic phenotype existing in both lung and head-and-neck cancer. This may have a clinical impact as imaging is routinely used in clinical practice, providing an unprecedented opportunity to improve decision-support in cancer treatment at low cost.
引用
收藏
页数:8
相关论文
共 28 条
[1]   Early Changes in Tumor Size in Patients Treated for Advanced Stage Nonsmall Cell Lung Cancer Do Not Correlate With Survival [J].
Birchard, Katherine R. ;
Hoang, Jenny K. ;
Herndon, James E., Jr. ;
Patz, Edward F., Jr. .
CANCER, 2009, 115 (03) :581-586
[2]   A Collaborative Enterprise for Multi-Stakeholder Participation in the Advancement of Quantitative Imaging [J].
Buckler, Andrew J. ;
Bresolin, Linda ;
Dunnick, N. Reed ;
Sullivan, Daniel C. .
RADIOLOGY, 2011, 258 (03) :906-914
[3]   Quantitative Imaging Test Approval and Biomarker Qualification: Interrelated but Distinct Activities [J].
Buckler, Andrew J. ;
Bresolin, Linda ;
Dunnick, N. Reed ;
Sullivan, Daniel C. .
RADIOLOGY, 2011, 259 (03) :875-884
[4]   RECIST: right time to renovate? [J].
Burton, Adrian .
LANCET ONCOLOGY, 2007, 8 (06) :464-465
[5]  
Compton C.C., 2012, AJCC cancer staging atlas a companion to the seventh editions of the AJCC cancer staging manual and handbook
[6]   Identification of noninvasive imaging surrogates for brain tumor gene-expression modules [J].
Diehn, Maximilian ;
Nardini, Christine ;
Wang, David S. ;
McGovern, Susan ;
Jayaraman, Mahesh ;
Liang, Yu ;
Alclape, Kenneth ;
Cha, Soonmee ;
Kuo, Michael D. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (13) :5213-5218
[7]   Exploring feature-based approaches in PET images for predicting cancer treatment outcomes [J].
El Naqa, I. ;
Grigsby, P. W. ;
Apte, A. ;
Kidd, E. ;
Donnelly, E. ;
Khullar, D. ;
Chaudhari, S. ;
Yang, D. ;
Schmitt, M. ;
Laforest, Richard ;
Thorstad, W. L. ;
Deasy, J. O. .
PATTERN RECOGNITION, 2009, 42 (06) :1162-1171
[8]   Tumour heterogeneity in oesophageal cancer assessed by CT texture analysis: Preliminary evidence of an association with tumour metabolism, stage, and survival [J].
Ganeshan, B. ;
Skogen, K. ;
Pressney, I. ;
Coutroubis, D. ;
Miles, K. .
CLINICAL RADIOLOGY, 2012, 67 (02) :157-164
[9]   Tumour heterogeneity in non-small cell lung carcinoma assessed by CT texture analysis: a potential marker of survival [J].
Ganeshan, Balaji ;
Panayiotou, Elleny ;
Burnand, Kate ;
Dizdarevic, Sabina ;
Miles, Ken .
EUROPEAN RADIOLOGY, 2012, 22 (04) :796-802
[10]   How Darwinian models inform therapeutic failure initiated by clonal heterogeneity in cancer medicine [J].
Gerlinger, M. ;
Swanton, C. .
BRITISH JOURNAL OF CANCER, 2010, 103 (08) :1139-1143