CO2 capture performance using limestone modified with propionate acid during calcium looping cycle

被引:0
作者
Sun Rongyue [1 ]
Li Yingjie [1 ]
Liu Hongling [1 ]
Wu Shuimu [1 ]
Lu Chunmei [1 ]
机构
[1] Shandong Univ, Sch Energy & Power Engn, Jinan 250061, Peoples R China
来源
CLEANER COMBUSTION AND SUSTAINABLE WORLD | 2012年
关键词
calcium looping cycle; limestone; propionate acid; modification; CO2; capture; FLUIDIZED-BED; CAO; SORBENTS; ENHANCEMENT; CONVERSION;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Limestone was modified with excessive propionate acid solution. The cyclic CO2 capture performance of the modified limestone during calcium looping cycle was investigated using a thermo-gravimetric analyzer (TGA) and a twin fixed-bed calcination/carbonation reactor system. The results obtained prove that the modified limestone can be an effective sorbent for CO2 capture at high temperature. The modified limestone exhibits obviously faster carbonation rate, and achieves higher carbonation conversion than the original one under the same reaction conditions. The optimum carbonation temperature for modified limestone is between 680 degrees C and 720 degrees C. Higher calcination temperature can aggravate sintering of the sorbent during calcination periods. The modified limestone shows better anti-sintering properties than original one at high calcination temperature. Long-term CO2 capture capacity of the sorbent is enhanced by modification using propionate acid, resulting in a carbonation conversion of 0.31 for modified limestone after 100 cycles, while the value for original limestone is only 0.08. The surface morphology of the modified limestone after the first calcination is much more porous and the pores are more connective than that of the original one. A much better pore structure is kept after 100 cycles for modified limestone. It indicates that modified limestone is much more sintering resistant than original one during cyclic reactions.
引用
收藏
页码:760 / 764
页数:5
相关论文
共 50 条
  • [41] Microstructure Improvement of Modified Calcium-Based Sorbents during Cyclic CO2 Capture
    Sun, Rongyue
    Li, Qingliang
    Li, Yingjie
    SUSTAINABLE DEVELOPMENT OF NATURAL RESOURCES, PTS 1-3, 2013, 616-618 : 1532 - +
  • [42] Calcination under low CO2 pressure enhances the calcium Looping performance of limestone for thermochemical energy storage
    Sarrion, Beatriz
    Perejon, Antonio
    Sanchez-Jimenez, Pedro E.
    Amghar, Nabil
    Chacartegui, Ricardo
    Manuel Valverde, Jose
    Perez-Maqueda, Luis A.
    CHEMICAL ENGINEERING JOURNAL, 2021, 417
  • [43] Experimental studies of modified limestone for CO2 capture in multiple carbonation/calcination cycles
    Wang, Rong-Chi
    Chuang, Wang-Chi
    JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS, 2013, 44 (06) : 1067 - 1074
  • [44] Calcium-Looping performance of mechanically modified Al2O3-CaO composites for energy storage and CO2 capture
    Benitez-Guerrero, Monica
    Manuel Valverde, Jose
    Sanchez-Jimenez, Pedro E.
    Perejon, Antonio
    Perez-Maqueda, Luis A.
    CHEMICAL ENGINEERING JOURNAL, 2018, 334 : 2343 - 2355
  • [45] Particle-scale modeling of the simultaneous carbonation and sulfation in calcium looping for CO2 capture
    Chen, Susu
    Qin, Changlei
    Deng, Tao
    Yin, Junjun
    Ran, Jingyu
    SEPARATION AND PURIFICATION TECHNOLOGY, 2020, 252
  • [46] Calcium Looping Process: Experimental investigation of limestone performance regenerated under high CO2 partial pressure and validation of a carbonator model
    Duelli , Glykeria
    Bernard, Lucia
    Bidwe, Ajay R.
    Stack-Lara, Vladimir
    Hawthorne, Craig
    Zieba, Marisuz
    Scheffknecht, Guenter
    GHGT-11, 2013, 37 : 190 - 198
  • [47] HCl absorption by CaO/Ca3Al2O6 sorbent from CO2 capture cycles using calcium looping
    Xie, Xin
    Li, Ying-Jie
    Liu, Chang-Tian
    Wang, Wen-Jing
    FUEL PROCESSING TECHNOLOGY, 2015, 138 : 500 - 508
  • [48] Calcium Looping for CO2 Capture at a Constant High Temperature
    Yin, Junjun
    Qin, Changlei
    Feng, Bo
    Ge, Lei
    Luo, Cong
    Liu, Wenqiang
    An, Hui
    ENERGY & FUELS, 2014, 28 (01) : 307 - 318
  • [49] Cyclic calcination/carbonation looping of dolomite modified with acetic acid for CO2 capture
    Li, Ying-jie
    Zhao, Chang-sui
    Duan, Lun-bo
    Liang, Cai
    Li, Qing-zhao
    Zhou, Wu
    Chen, Hui-chao
    FUEL PROCESSING TECHNOLOGY, 2008, 89 (12) : 1461 - 1469
  • [50] CO2 capture by calcium aluminate pellets in a small fluidized bed
    Blamey, John
    Al-Jeboori, Mohamad J.
    Manovic, Vasilije
    Fennell, Paul S.
    Anthony, Edward J.
    FUEL PROCESSING TECHNOLOGY, 2016, 142 : 100 - 106