Loss-Mitigated Collective Resonances in Gain-Assisted Plasmonic Mesocapsules

被引:30
作者
Infusino, Melissa [1 ,2 ]
De Luca, Antonio [1 ,3 ]
Veltri, Alessandro [1 ,3 ]
Vazquez-Vazquez, Carmen [4 ]
Correa-Duarte, Miguel A. [4 ]
Dhama, Rakesh [3 ]
Strangi, Giuseppe [2 ]
机构
[1] Case Western Reserve Univ, CNR IPCF UOS Cosenza, Licryl Lab, Cleveland, OH 44106 USA
[2] Case Western Reserve Univ, Dept Phys, Cleveland, OH 44106 USA
[3] Univ Calabria, Dept Phys, I-87036 Arcavacata Di Rende, Italy
[4] Univ Vigo, Dept Phys Chem, Vigo 36310, Spain
来源
ACS PHOTONICS | 2014年 / 1卷 / 04期
关键词
active plasmonics; loss compensation; nanostructured systems; collective resonances; pump-probe spectroscopy; ENERGY-TRANSFER; OPTICAL METAMATERIALS; LOSS COMPENSATION; NANOPARTICLES; ENHANCEMENT; DESIGN; ARRAYS; MODES; SHELL; CORE;
D O I
10.1021/ph400174p
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Inherent optical losses of plasmonic materials represent a crucial issue for optoplasmonics, whereas the realization of hierarchical plasmonic nanostructures implemented with gain functionalities is a promising and valuable solution to the problem. Here we demonstrate that porous silica capsules embedding gold nanoparticles (Au NPs) and fabricated at a scale intermediate between the single plasmonic nanostructure and bulk materials show remarkable form function relations. At this scale, in fact, the plasmon gain interplay is dominated by the location of the gain medium with respect to the spatial distribution of the local field. In particular, the hollow spherical cavities of these structures allow regions of uniform plasmonic field where the energy transfer occurring between chromophoric donors and the surrounding plasmonic acceptors gives rise to a broadband attenuation of losses.
引用
收藏
页码:371 / 376
页数:6
相关论文
共 51 条
  • [1] Enhancement and quenching of single-molecule fluorescence
    Anger, P
    Bharadwaj, P
    Novotny, L
    [J]. PHYSICAL REVIEW LETTERS, 2006, 96 (11)
  • [2] Biosensing with plasmonic nanosensors
    Anker, Jeffrey N.
    Hall, W. Paige
    Lyandres, Olga
    Shah, Nilam C.
    Zhao, Jing
    Van Duyne, Richard P.
    [J]. NATURE MATERIALS, 2008, 7 (06) : 442 - 453
  • [3] Reversible Strong Coupling in Silver Nanoparticle Arrays Using Photochromic Molecules
    Baudrion, Anne-Laure
    Perron, Antoine
    Veltri, Alessandro
    Bouhelier, Alexandre
    Adam, Pierre-Michel
    Bachelot, Renaud
    [J]. NANO LETTERS, 2013, 13 (01) : 282 - 286
  • [4] Surface plasmon-polariton amplifiers and lasers
    Berini, Pierre
    De Leon, Israel
    [J]. NATURE PHOTONICS, 2012, 6 (01) : 16 - 24
  • [5] Resonance energy transfer from a fluorescent dye to a metal nanoparticle
    Bhowmick, Somnath
    Saini, Sangeeta
    Shenoy, Vijay B.
    Bagchi, Biman
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2006, 125 (18)
  • [6] Cowpea mosaic virus as a scaffold for 3-D patterning of gold nanoparticles
    Blum, AS
    Soto, CM
    Wilson, CD
    Cole, JD
    Kim, M
    Gnade, B
    Chatterji, A
    Ochoa, WF
    Lin, TW
    Johnson, JE
    Ratna, BR
    [J]. NANO LETTERS, 2004, 4 (05) : 867 - 870
  • [7] Composite material made of plasmonic nanoshells with quantum dot cores: loss-compensation and ε-near-zero physical properties
    Campione, Salvatore
    Capolino, Filippo
    [J]. NANOTECHNOLOGY, 2012, 23 (23)
  • [8] Complex modes and near-zero permittivity in 3D arrays of plasmonic nanoshells: loss compensation using gain [Invited]
    Campione, Salvatore
    Albani, Matteo
    Capolino, Filippo
    [J]. OPTICAL MATERIALS EXPRESS, 2011, 1 (06): : 1077 - 1089
  • [9] Linear Self-Assembly of Nanoparticles Within Liquid Crystal Defect Arrays
    Coursault, Delphine
    Grand, Johan
    Zappone, Bruno
    Ayeb, Habib
    Levi, Georges
    Felidj, Nordin
    Lacaze, Emmanuelle
    [J]. ADVANCED MATERIALS, 2012, 24 (11) : 1461 - 1465
  • [10] De Luca A, 2012, J MATER CHEM, V22, P8846, DOI [10.1039/c2jm30341, 10.1039/c2jm30341h]