Thin MoS2 Nanoflakes Encapsulated in Carbon Nanofibers as High-Performance Anodes for Lithium-Ion Batteries

被引:166
作者
Zhao, Chenyang [1 ]
Kong, Junhua [2 ]
Yao, Xiayin [1 ]
Tang, Xiaosheng [2 ]
Dong, Yuliang [1 ]
Phua, Si Lei [1 ]
Lu, Xuehong [1 ,2 ]
机构
[1] Nanyang Technol Univ, Sch Mat Sci & Engn, Singapore 639798, Singapore
[2] Nanyang Technol Univ, Temasek Labs NTU, Singapore 637553, Singapore
关键词
molybdenum disulfide (MoS2); hydrothermal; electrospinning; carbon nanofibers; lithium-ion battery; flexible anode; MOLYBDENUM-DISULFIDE MOS2; ENERGY-CONVERSION; ELECTROCHEMICAL PERFORMANCES; SECONDARY BATTERIES; HYDROGEN EVOLUTION; ASSISTED SYNTHESIS; STORAGE PROPERTIES; GRAPHENE; NANOSHEETS; SUPERCAPACITORS;
D O I
10.1021/am4058088
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this work, highly flexible MoS2-based lithium-ion battery anodes composed of disordered thin MoS2 nanoflakes encapsulated in amorphous carbon nanofibrous mats were fabricated for the first time through hydrothermal synthesis of graphene-like MoS2, followed by electrospinning and carbonization. X-ray diffraction as well as scanning and transmission electron microscopic studies show that the as-synthesized MoS2 nanoflakes have a thickness of about 5 nm with an expanded interlayer spacing, and their structure and morphology are well-retained after the electrospinning and carbonization. At relatively low MoS2 contents, the nanoflakes are dispersed and well-embedded in the carbon nanofibers. Consequently, excellent electrochemical performance, including good cyclability and high rate capacity, was achieved with the hybrid nanofibrous mat at the MoS2 content of 47%, which may be attributed to the fine thickness and multilayered structure of the MoS2 sheets with an expanded interlayer spacing, the good charge conduction provided by the high-aspect-ratio carbon nanofibers, and the robustness of the nanofibrous mat.
引用
收藏
页码:6392 / 6398
页数:7
相关论文
共 53 条
[1]   Comparison of GO, GO/MWCNTs composite and MWCNTs as potential electrode materials for supercapacitors [J].
Aboutalebi, Seyed Hamed ;
Chidembo, Alfred T. ;
Salari, Maryam ;
Konstantinov, Konstantin ;
Wexler, David ;
Liu, Hua Kun ;
Dou, Shi Xue .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (05) :1855-1865
[2]   MoS2-MWCNT hybrids as a superior anode in lithium-ion batteries [J].
Bindumadhavan, Kartick ;
Srivastava, Suneel Kumar ;
Mahanty, Sourindra .
CHEMICAL COMMUNICATIONS, 2013, 49 (18) :1823-1825
[3]   Electrospinning: designed architectures for energy conversion and storage devices [J].
Cavaliere, Sara ;
Subianto, Surya ;
Savych, Iuliia ;
Jones, Deborah J. ;
Roziere, Jacques .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (12) :4761-4785
[4]   Single-layer MoS2/graphene dispersed in amorphous carbon: towards high electrochemical performances in rechargeable lithium ion batteries [J].
Chang, Kun ;
Chen, Weixiang .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (43) :17175-17184
[5]   L-Cysteine-Assisted Synthesis of Layered MoS2/Graphene Composites with Excellent Electrochemical Performances for Lithium Ion Batteries [J].
Chang, Kun ;
Chen, Weixiang .
ACS NANO, 2011, 5 (06) :4720-4728
[6]   Graphene-like MoS2/amorphous carbon composites with high capacity and excellent stability as anode materials for lithium ion batteries [J].
Chang, Kun ;
Chen, Weixiang ;
Ma, Lin ;
Li, Hui ;
Li, He ;
Huang, Feihe ;
Xu, Zhude ;
Zhang, Qingbo ;
Lee, Jim-Yang .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (17) :6251-6257
[7]   Thin films of fullerene-like MoS2 nanoparticles with ultra-low friction and wear [J].
Chhowalla, M ;
Amaratunga, GAJ .
NATURE, 2000, 407 (6801) :164-167
[8]   Glucose-Assisted Growth of MoS2 Nanosheets on CNT Backbone for Improved Lithium Storage Properties [J].
Ding, Shujiang ;
Chen, Jun Song ;
Lou, Xiong Wen .
CHEMISTRY-A EUROPEAN JOURNAL, 2011, 17 (47) :13142-13145
[9]   Superior stability and high capacity of restacked molybdenum disulfide as anode material for lithium ion batteries [J].
Du, Guodong ;
Guo, Zaiping ;
Wang, Shiquan ;
Zeng, Rong ;
Chen, Zhixin ;
Liu, Huakun .
CHEMICAL COMMUNICATIONS, 2010, 46 (07) :1106-1108
[10]   Lithium storage performance in ordered mesoporous MoS2 electrode material [J].
Fang, Xiangpeng ;
Yu, Xiqian ;
Liao, Saifen ;
Shi, Yifeng ;
Hu, Yong-Sheng ;
Wang, Zhaoxiang ;
Stucky, Galen D. ;
Chen, Liquan .
MICROPOROUS AND MESOPOROUS MATERIALS, 2012, 151 :418-423