Facile Generation of Tumor-pH-Labile Linkage-Bridged Block Copolymers for Chemotherapeutic Delivery

被引:158
作者
Sun, Chun-Yang [1 ,2 ]
Liu, Yang [1 ,2 ]
Du, Jin-Zhi [4 ,5 ]
Cao, Zhi-Ting [3 ]
Xu, Cong-Fei [3 ]
Wang, Jun [1 ,2 ,3 ]
机构
[1] Univ Sci & Technol China, Sch Life Sci, CAS Key Lab Innate Immun & Chron Dis, Hefei 230027, Peoples R China
[2] Univ Sci & Technol China, Med Ctr, Hefei 230027, Peoples R China
[3] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230027, Peoples R China
[4] Emory Univ, Dept Biomed Engn, Atlanta, GA 30322 USA
[5] Georgia Inst Technol, Atlanta, GA 30322 USA
基金
中国国家自然科学基金;
关键词
bridged copolymers; clinical translation; drug delivery; nanoparticles; tumor-acidity-responsive; TARGETED SIRNA DELIVERY; DRUG-DELIVERY; CLINICAL TRANSLATION; CANCER; NANOPARTICLES; NANOMEDICINE; MICELLES; ACCUMULATION; PROGRESS; LIBRARY;
D O I
10.1002/anie.201509507
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Successful bench-to-bedside translation of nanomedicine relies heavily on the development of nanocarriers with superior therapeutic efficacy and high biocompatibility. However, the optimal strategy for improving one aspect often conflicts with the other. Herein, we report a tactic of designing tumor-pH-labile linkage-bridged copolymers of clinically validated poly(d,l-lactide) and poly(ethylene glycol) (PEG-Dlink(m)-PDLLA) for safe and effective drug delivery. Upon arriving at the tumor site, PEG-Dlink(m)-PDLLA nanoparticles will lose the PEG layer and increase zeta potential by responding to tumor acidity, which significantly enhances cellular uptake and improves the invivo tumor inhibition rate to 78.1% in comparison to 47.8% of the non-responsive control. Furthermore, PEG-Dlink(m)-PDLLA nanoparticles show comparable biocompatibility with the clinically used PEG-b-PDLLA micelle. The improved therapeutic efficacy and safety demonstrate great promise for our strategy in future translational studies.
引用
收藏
页码:1010 / 1014
页数:5
相关论文
共 45 条
[1]   A phase II trial of Cremorphor EL-free paclitaxel (Genexol-PM) and gemcitabine in patients with advanced non-small cell lung cancer [J].
Ahn, Hee Kyung ;
Jung, Minkyu ;
Sym, Sun Jin ;
Shin, Dong Bok ;
Kang, Shin Myung ;
Kyung, Sun Young ;
Park, Jeong-Woong ;
Jeong, Sung Hwan ;
Cho, Eun Kyung .
CANCER CHEMOTHERAPY AND PHARMACOLOGY, 2014, 74 (02) :277-282
[2]  
[Anonymous], 2015, ANGEW CHEM
[3]  
Avgoustakis Konstantinos, 2004, Current Drug Delivery, V1, P321, DOI 10.2174/1567201043334605
[4]   Principles of nanoparticle design for overcoming biological barriers to drug delivery [J].
Blanco, Elvin ;
Shen, Haifa ;
Ferrari, Mauro .
NATURE BIOTECHNOLOGY, 2015, 33 (09) :941-951
[5]   Progress of drug-loaded polymeric micelles into clinical studies [J].
Cabral, Horacio ;
Kataoka, Kazunori .
JOURNAL OF CONTROLLED RELEASE, 2014, 190 :465-476
[6]   Strategies for advancing cancer nanomedicine [J].
Chauhan, Vikash P. ;
Jain, Rakesh K. .
NATURE MATERIALS, 2013, 12 (11) :958-962
[7]   Multifunctional Nanoparticles: Cost Versus Benefit of Adding Targeting and Imaging Capabilities [J].
Cheng, Zhiliang ;
Al Zaki, Ajlan ;
Hui, James Z. ;
Muzykantov, Vladimir R. ;
Tsourkas, Andrew .
SCIENCE, 2012, 338 (6109) :903-910
[8]   Therapeutic nanoparticles for drug delivery in cancer [J].
Cho, Kwangjae ;
Wang, Xu ;
Nie, Shuming ;
Chen, Zhuo ;
Shin, Dong M. .
CLINICAL CANCER RESEARCH, 2008, 14 (05) :1310-1316
[9]   Functional block copolymer assemblies responsive to tumor and intracellular microenvironments for site-specific drug delivery and enhanced imaging performance [J].
Ge, Zhishen ;
Liu, Shiyong .
CHEMICAL SOCIETY REVIEWS, 2013, 42 (17) :7289-7325
[10]   Understanding the Warburg Effect: The Metabolic Requirements of Cell Proliferation [J].
Heiden, Matthew G. Vander ;
Cantley, Lewis C. ;
Thompson, Craig B. .
SCIENCE, 2009, 324 (5930) :1029-1033