Geometric Properties of Certain Classes of Analytic Functions Associated with a q-Integral Operator

被引:46
作者
Mahmood, Shahid [1 ]
Raza, Nusrat [2 ]
AbuJarad, Eman S. A. [3 ]
Srivastava, Gautam [4 ,5 ]
Srivastava, H. M. [6 ,7 ]
Malik, Sarfraz Nawaz [8 ]
机构
[1] Sarhad Univ Sci & Informat Technol, Dept Mech Engn, Ring Rd, Peshawar 25000, Pakistan
[2] Aligarh Muslim Univ, Womens Coll, Math Sect, Aligarh 202001, Uttar Pradesh, India
[3] Aligarh Muslim Univ, Dept Math, Aligarh 202001, Uttar Pradesh, India
[4] Brandon Univ, Dept Math & Comp Sci, 270 18th St, Brandon, MB R7A 6A9, Canada
[5] China Med Univ, Res Ctr Interneural Comp, Taichung 40402, Taiwan
[6] Univ Victoria, Dept Math & Stat, Victoria, BC V8W 3R4, Canada
[7] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 40402, Taiwan
[8] COMSATS Univ Islamabad, Dept Math, Wah Campus 47040, Islamabad, Pakistan
来源
SYMMETRY-BASEL | 2019年 / 11卷 / 05期
关键词
Geometric Function Theory; q-integral operator; q-starlike functions of complex order; q-convex functions of complex order; (delta; q)-neighborhood; Q-STARLIKE; FAMILIES;
D O I
10.3390/sym11050719
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This article presents certain families of analytic functions regarding q-starlikeness and q-convexity of complex order gamma (gamma is an element of C\{0}). This introduced a q-integral operator and certain subclasses of the newly introduced classes are defined by using this q-integral operator. Coefficient bounds for these subclasses are obtained. Furthermore, the (delta, q)-neighborhood of analytic functions are introduced and the inclusion relations between the (delta, q)-neighborhood and these subclasses of analytic functions are established. Moreover, the generalized hyper-Bessel function is defined, and application of main results are discussed.
引用
收藏
页数:14
相关论文
共 27 条
  • [1] [Anonymous], SYMMETRY BASEL
  • [2] [Anonymous], 2012, FRACT DIFFER CALC, DOI DOI 10.7153/FDC-02-10
  • [3] Baricz A., 2010, GEN BESSEL FUNCTIONS
  • [4] On the zeros of the hyper-Bessel function
    Chaggara, H.
    Ben Romdhane, N.
    [J]. INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2015, 26 (02) : 96 - 101
  • [5] Corcino R. B., 2008, Integers, V8, pA29
  • [6] Deniz E, 2011, TAIWAN J MATH, V15, P883
  • [7] Ezeafulukwe U. A., 2015, FASCICULI MATH, V55, P53
  • [8] Ezeafulukwe UA., 2015, Int J Math Math Sci, V2015, P1, DOI [10.1155/2015/489218, DOI 10.1155/2015/489218]
  • [9] Gauchman H, 2004, COMPUT MATH APPL, V47, P281, DOI 10.1016/S0898-1221(04)00012-4
  • [10] Ismail M.E.H., 1990, COMPLEX VAR, V14, P77, DOI [10.1080/17476939008814407, DOI 10.1080/17476939008814407]