Embeddings of resolvable group divisible designs with block size 3 and for all λ

被引:0
作者
Shen, Jun [1 ]
Shen, Hao [2 ]
机构
[1] Shanghai Univ Engn Sci, Coll Fundamental Studies, Shanghai 201620, Peoples R China
[2] Shanghai Jiao Tong Univ, Dept Math, Shanghai 200240, Peoples R China
关键词
group divisible design; resolvable; embedding; KIRKMAN TRIPLE-SYSTEMS; SUBSYSTEMS; EXISTENCE;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper investigates the embedding problem for resolvable group divisible designs with block size 3. The necessary and sufficient conditions are determined for all lambda >= 1.
引用
收藏
页码:271 / 287
页数:17
相关论文
共 20 条
[1]   RESOLVABLE GROUP DIVISIBLE DESIGNS WITH BLOCK SIZE 3 [J].
ASSAF, AM ;
HARTMAN, A .
DISCRETE MATHEMATICS, 1989, 77 (1-3) :5-20
[2]  
COLBOURN CJ, 1996, HDB COMBINATORIAL DE
[3]  
DENG D, DISCRETE MA IN PRESS
[4]   Further results on nearly Kirkman triple systems with subsystems [J].
Deng, DM ;
Rees, R ;
Shen, H .
DISCRETE MATHEMATICS, 2003, 270 (1-3) :99-114
[5]   On the existence and application of incomplete nearly Kirkman triple systems with a hole of size 6 or 12 [J].
Deng, DM ;
Rees, R ;
Shen, H .
DISCRETE MATHEMATICS, 2003, 261 (1-3) :209-233
[6]  
FURINO SC, 1996, FRAME RESOLVABLE DES
[7]   On group-divisible designs with block size four and group-type 6um1 [J].
Ge, GN ;
Rees, R .
DISCRETE MATHEMATICS, 2004, 279 (1-3) :247-265
[8]   Resolvable group divisible designs with block size four and group size six [J].
Ge, GN ;
Lam, CWH .
DISCRETE MATHEMATICS, 2003, 268 (1-3) :139-151
[9]   On group-divisible designs with block size four and group-type gum1 [J].
Ge, GN ;
Rees, RS .
DESIGNS CODES AND CRYPTOGRAPHY, 2002, 27 (1-2) :5-24
[10]  
Hanani H., 1974, J. Combin. Theory Ser. A, V17, P275