RATIONAL BV-ALGEBRA IN STRING TOPOLOGY

被引:32
作者
Felix, Yves [1 ]
Thomas, Jean-Claude [2 ]
机构
[1] Univ Catholique Louvain, Dept Math, B-1348 Louvain, Belgium
[2] Fac Sci, LAREMA, CNRS, UMR 6093, F-49045 Angers, France
来源
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE | 2008年 / 136卷 / 02期
关键词
String homology; rational homotopy; Hochschild cohomology; free loop space homology;
D O I
10.24033/bsmf.2558
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let M be a 1-connected closed manifold of dimension m and LM be the space of free loops on M. M. Chas and D. Sullivan defined a structure of BV-algebra on the singular homology of LM, H(*)(LM;k). When the ring of coefficients is a field of characteristic zero, we prove that there exists a BV-algebra structure oil the Hochschild cohomology H H* (C* (M); C* (M)) which extends the canonical structure of Gerstenhaber algebra. We. construct then an isomorphism of BV-algebras between H H*(C*(M);C*(M)) and the shifted homology H(*+m) (LM;k). We also prove that the Chas-Sullivan product and the BV-operator behave well with a Hodge decomposition of H(*) (LM).
引用
收藏
页码:311 / 327
页数:17
相关论文
共 35 条
[1]  
BRUGHELEA D, 1988, LECT NOTES MATH, V1318, P51
[2]  
Brylinski J.-L., 1993, PROGR MATH BIRKHAUSE
[3]  
Chas M., 1999, ARXIVMATHGT9911159
[4]  
Chataur D, 2005, INT MATH RES NOTICES, V2005, P2829
[5]   A homotopy theoretic realization of string topology [J].
Cohen, RL ;
Jones, JAS .
MATHEMATISCHE ANNALEN, 2002, 324 (04) :773-798
[6]  
COHEN RL, 2004, PROGR MATH, V215
[7]   Gerstenhaber duality in Hochschild cohomology [J].
Félix, Y ;
Menichi, L ;
Thomas, JC .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2005, 199 (1-3) :43-59
[8]   Monoid of self-equivalences and free loop spaces [J].
Félix, Y ;
Thomas, JC .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 132 (01) :305-312
[9]  
FELIX Y, 2004, PUBL MATH-PARIS, V99, P235, DOI DOI 10.1007/S10240-004-0021-Y
[10]  
FELIX Y, 1995, DIFFERENTIAL GRADED