Variational Approach for Many-Body Systems at Finite Temperature

被引:16
|
作者
Shi, Tao [1 ,2 ]
Demler, Eugene [3 ]
Cirac, J. Ignacio [4 ,5 ]
机构
[1] Chinese Acad Sci, Inst Theoret Phys, POB 2735, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, CAS Ctr Excellence Topol Quantum Computat, Beijing 100049, Peoples R China
[3] Harvard Univ, Dept Phys, 17 Oxford St, Cambridge, MA 02138 USA
[4] Max Planck Inst Quantum Opt, Hans Kopfermann Str 1, D-85748 Garching, Germany
[5] Munich Ctr Quantum Sci & Technol MCQST, Schellingstr 4, D-80799 Munich, Germany
基金
美国国家科学基金会;
关键词
CHARGE-DENSITY-WAVE; HOLSTEIN MODEL;
D O I
10.1103/PhysRevLett.125.180602
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce an equation for density matrices that ensures a monotonic decrease of the free energy and reaches a fixed point at the Gibbs thermal. We build a variational approach for many-body systems that can be applied to a broad class of states, including all bosonic and fermionic Gaussian, as well as their generalizations obtained by unitary transformations, such as polaron transformations in electron-phonon systems. We apply it to the Holstein model on 20 x 20 and 50 x 50 square lattices, and predict phase separation between the superconducting and charge-density wave phases in the strong interaction regime.
引用
收藏
页数:5
相关论文
共 50 条
  • [32] A VARIATIONAL METHOD FOR MANY-BODY SYSTEMS USING A SEPARATION INTO A DIFFERENCE OF HAMILTONIANS
    HADER, M
    MERTENS, FG
    EUROPHYSICS LETTERS, 1988, 5 (03): : 199 - 202
  • [33] Measuring the temperature of cold many-body quantum systems
    Hovhannisyan, Karen, V
    Correa, Luis A.
    PHYSICAL REVIEW B, 2018, 98 (04)
  • [34] PATH-INTEGRAL APPROACH TO A FINITE MANY-BODY PROBLEM
    GRINBERG, H
    MARANON, J
    PHYSICS LETTERS A, 1983, 94 (6-7) : 275 - 280
  • [35] Numerical finite size scaling approach to many-body localization
    Fleury, Genevieve
    Waintal, Xavier
    PHYSICAL REVIEW LETTERS, 2008, 100 (07)
  • [36] Classical algorithms for many-body quantum systems at finite energies
    Yang, Yilun
    Cirac, J. Ignacio
    Banuls, Mari Carmen
    PHYSICAL REVIEW B, 2022, 106 (02)
  • [37] A perturbative probabilistic approach to quantum many-body systems
    Di Stefano, Andrea
    Ostilli, Massimo
    Presilla, Carlo
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2013,
  • [38] Double excitations in correlated systems: A many-body approach
    Sangalli, Davide
    Romaniello, Pina
    Onida, Giovanni
    Marini, Andrea
    JOURNAL OF CHEMICAL PHYSICS, 2011, 134 (03):
  • [39] Variational benchmarks for quantum many-body problems
    Wu, Dian
    Rossi, Riccardo
    Vicentini, Filippo
    Astrakhantsev, Nikita
    Becca, Federico
    Cao, Xiaodong
    Carrasquilla, Juan
    Ferrari, Francesco
    Georges, Antoine
    Hibat-Allah, Mohamed
    Imada, Masatoshi
    Lauchli, Andreas M.
    Mazzola, Guglielmo
    Mezzacapo, Antonio
    Millis, Andrew
    Moreno, Javier Robledo
    Neupert, Titus
    Nomura, Yusuke
    Nys, Jannes
    Parcollet, Olivier
    Pohle, Rico
    Romero, Imelda
    Schmid, Michael
    Silvester, J. Maxwell
    Sorella, Sandro
    Tocchio, Luca F.
    Wang, Lei
    White, Steven R.
    Wietek, Alexander
    Yang, Qi
    Yang, Yiqi
    Zhang, Shiwei
    Carleo, Giuseppe
    SCIENCE, 2024, 386 (6719) : 296 - 301
  • [40] VARIATIONAL METHODS AND THE NUCLEAR MANY-BODY PROBLEM
    BROUT, R
    PHYSICAL REVIEW, 1958, 111 (05): : 1324 - 1333