Variational Approach for Many-Body Systems at Finite Temperature

被引:17
作者
Shi, Tao [1 ,2 ]
Demler, Eugene [3 ]
Cirac, J. Ignacio [4 ,5 ]
机构
[1] Chinese Acad Sci, Inst Theoret Phys, POB 2735, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, CAS Ctr Excellence Topol Quantum Computat, Beijing 100049, Peoples R China
[3] Harvard Univ, Dept Phys, 17 Oxford St, Cambridge, MA 02138 USA
[4] Max Planck Inst Quantum Opt, Hans Kopfermann Str 1, D-85748 Garching, Germany
[5] Munich Ctr Quantum Sci & Technol MCQST, Schellingstr 4, D-80799 Munich, Germany
基金
美国国家科学基金会;
关键词
CHARGE-DENSITY-WAVE; HOLSTEIN MODEL;
D O I
10.1103/PhysRevLett.125.180602
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce an equation for density matrices that ensures a monotonic decrease of the free energy and reaches a fixed point at the Gibbs thermal. We build a variational approach for many-body systems that can be applied to a broad class of states, including all bosonic and fermionic Gaussian, as well as their generalizations obtained by unitary transformations, such as polaron transformations in electron-phonon systems. We apply it to the Holstein model on 20 x 20 and 50 x 50 square lattices, and predict phase separation between the superconducting and charge-density wave phases in the strong interaction regime.
引用
收藏
页数:5
相关论文
共 31 条
[1]   Solving Quantum Impurity Problems in and out of Equilibrium with the Variational Approach [J].
Ashida, Yuto ;
Shi, Tao ;
Banuls, Mari Carmen ;
Cirac, J. Ignacio ;
Demler, Eugene .
PHYSICAL REVIEW LETTERS, 2018, 121 (02)
[2]   Density operators for fermions [J].
Cahill, KE ;
Glauber, RJ .
PHYSICAL REVIEW A, 1999, 59 (02) :1538-1555
[3]   Variational tensor network renormalization in imaginary time: Benchmark results in the Hubbard model at finite temperature [J].
Czarnik, Piotr ;
Rams, Marek M. ;
Dziarmaga, Jacek .
PHYSICAL REVIEW B, 2016, 94 (23)
[4]   Variational tensor network renormalization in imaginary time: Two-dimensional quantum compass model at finite temperature [J].
Czarnik, Piotr ;
Dziarmaga, Jacek ;
Oles, Andrzej M. .
PHYSICAL REVIEW B, 2016, 93 (18)
[5]  
Dirac PAM, 1930, P CAMB PHILOS SOC, V26, P376
[6]   2ND-NEIGHBOR HOPPING IN THE ATTRACTIVE HUBBARD-MODEL [J].
DOSSANTOS, RR .
PHYSICAL REVIEW B, 1992, 46 (09) :5496-5498
[7]   ATTRACTIVE HUBBARD-MODEL ON A TRIANGULAR LATTICE [J].
DOSSANTOS, RR .
PHYSICAL REVIEW B, 1993, 48 (06) :3976-3982
[8]   Pseudogap crossover in the electron-phonon system [J].
Esterlis, I ;
Kivelson, S. A. ;
Scalapino, D. J. .
PHYSICAL REVIEW B, 2019, 99 (17)
[9]  
Huang K., 1987, Statistical Mechanics
[10]  
Jahromi S. S., ARXIV200500314