Algorithms for the variational inequalities and fixed point problems

被引:2
作者
Liu, Yaqiang [1 ]
Yao, Zhangsong [2 ]
Liou, Yeong-Cheng [3 ,4 ]
Zhu, Li-Jun [5 ]
机构
[1] Tianjin Polytech Univ, Sch Management, Tianjin 300387, Peoples R China
[2] Nanjing Xiaozhuang Univ, Sch Informat Engn, Nanjing 211171, Jiangsu, Peoples R China
[3] Cheng Shiu Univ, Dept Informat Management, Kaohsiung 833, Taiwan
[4] Kaohsiung Med Univ, Ctr Gen Educ, Kaohsiung 807, Taiwan
[5] Beifang Univ Nationalities, Sch Math & Informat Sci, Yinchuan 750021, Peoples R China
来源
JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS | 2016年 / 9卷 / 01期
关键词
Variational inequality; monotone mapping; nonexpansive mapping; fixed point; minimum norm; NONEXPANSIVE-MAPPINGS; EXTRAGRADIENT METHOD; CONVERGENCE THEOREMS; ITERATION; OPERATORS;
D O I
10.22436/jnsa.009.01.06
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A system of variational inequality and fixed point problems is considered. Two algorithms have been constructed. Our algorithms can find the minimum norm solution of this system of variational inequality and fixed point problems. (C) 2016 All rights reserved.
引用
收藏
页码:61 / 74
页数:14
相关论文
共 34 条
[1]  
[Anonymous], ADV NONLINEAR VAR IN
[2]   Convergence of direct methods for paramonotone variational inequalities [J].
Bello Cruz, J. Y. ;
Iusem, A. N. .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2010, 46 (02) :247-263
[3]   Proximal point algorithm controlled by a slowly vanishing term: Applications to hierarchical minimization [J].
Cabot, A .
SIAM JOURNAL ON OPTIMIZATION, 2005, 15 (02) :555-572
[4]   Strong convergence theorems by a relaxed extragradient method for a general system of variational inequalities [J].
Ceng, Lu-Chuan ;
Wang, Chang-yu ;
Yao, Jen-Chih .
MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2008, 67 (03) :375-390
[5]   The Subgradient Extragradient Method for Solving Variational Inequalities in Hilbert Space [J].
Censor, Y. ;
Gibali, A. ;
Reich, S. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2011, 148 (02) :318-335
[6]   A new method for solving a system of generalized nonlinear variational inequalities in Banach spaces [J].
Chang, S. S. ;
Lee, H. W. Joseph ;
Chan, Chi Kin ;
Liu, J. A. .
APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (16) :6830-6837
[7]   REGULARIZATION AND ITERATION METHODS FOR A CLASS OF MONOTONE VARIATIONAL INEQUALITIES [J].
Chen, Rudong ;
Su, Yongfu ;
Xu, Hong-Kun .
TAIWANESE JOURNAL OF MATHEMATICS, 2009, 13 (2B) :739-752
[8]   An approximate proximal-extragradient type method for monotone variational inequalities [J].
He, BS ;
Yang, ZH ;
Yuan, XM .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 300 (02) :362-374
[9]  
KORPELEVICH GM, 1976, EKONOMIKA MATEMATICH, V12, P747
[10]   Visco-resolvent algorithms for monotone operators and nonexpansive mappings [J].
Li, Peize ;
Kang, Shin Min ;
Zhu, Li-Jun .
JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2014, 7 (05) :325-344