Engineered Pseudomonas putida simultaneously catabolizes five major components of corn stover lignocellulose: Glucose, xylose, arabinose, p-coumaric acid, and acetic acid

被引:76
作者
Elmore, Joshua R. [1 ,2 ]
Dexter, Gara N. [1 ]
Salvachua, Davinia [3 ]
O'Brien, Marykate [3 ]
Klingeman, Dawn M. [1 ]
Gorday, Kent [1 ]
Michener, Joshua K. [1 ]
Peterson, Darren J. [3 ]
Beckham, Gregg T. [3 ]
Guss, Adam M. [1 ]
机构
[1] Oak Ridge Natl Lab, Biosci Div, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA
[2] Pacific Northwest Natl Lab, Biol Sci Div, Richland, WA 99354 USA
[3] Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA
关键词
Lignocellulose; Pseudomonas putida; Hydrolysate; Metabolic engineering; Lignin; Substrate co-utilization; Biomass valorization; LIGNIN DEPOLYMERIZATION; METABOLISM; CHEMICALS; IDENTIFICATION; VALORIZATION; BIOFUELS; KT2440; S12;
D O I
10.1016/j.ymben.2020.08.001
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Valorization of all major lignocellulose components, including lignin, cellulose, and hemicellulose is critical for an economically viable bioeconomy. In most biochemical conversion approaches, the standard process separately upgrades sugar hydrolysates and lignin. Here, we present a new process concept based on an engineered microbe that could enable simultaneous upgrading of all lignocellulose streams, which has the ultimate potential to reduce capital cost and enable new metabolic engineering strategies. Pseudomonas putida is a robust microorganism capable of natively catabolizing aromatics, organic acids, and D-glucose. We engineered this strain to utilize D-xylose by tuning expression of a heterologous D-xylose transporter, catabolic genes xylAB, and pentose phosphate pathway (PPP) genes tal-tkt. We further engineered L-arabinose utilization via the PPP or an oxidative pathway. This resulted in a growth rate on xylose and arabinose of 0.32 h(-1) and 0.38 h(-1), respectively. Using the oxidative L-arabinose pathway with the PPP xylose pathway enabled D-glucose, D-xylose, and L-arabinose coutilization in minimal medium using model compounds as well as real corn stover hydrolysate, with a maximum hydrolysate sugar consumption rate of 3.3 g/L/h. After modifying catabolite repression, our engineered P. putida simultaneously co-utilized five representative compounds from cellulose (D-glucose), hemicellulose (D-xylose, L-arabinose, and acetic acid), and lignin-related compounds (p-coumarate), demonstrating the feasibility of simultaneously upgrading total lignocellulosic biomass to value-added chemicals.
引用
收藏
页码:62 / 71
页数:10
相关论文
共 53 条
[1]   Hierarchy of non-glucose sugars in Escherichia coli [J].
Aidelberg, Guy ;
Towbin, Benjamin D. ;
Rothschild, Daphna ;
Dekel, Erez ;
Bren, Anat ;
Alon, Uri .
BMC SYSTEMS BIOLOGY, 2014, 8
[2]   Opportunities and challenges in biological lignin valorization [J].
Beckham, Gregg T. ;
Johnson, Christopher W. ;
Karp, Eric M. ;
Salvachua, Davinia ;
Vardon, Derek R. .
CURRENT OPINION IN BIOTECHNOLOGY, 2016, 42 :40-53
[3]   The emerging role for bacteria in lignin degradation and bio-product formation [J].
Bugg, Timothy D. H. ;
Ahmad, Mark ;
Hardiman, Elizabeth M. ;
Singh, Rahul .
CURRENT OPINION IN BIOTECHNOLOGY, 2011, 22 (03) :394-400
[4]  
Chen XW, 2016, ENERG ENVIRON SCI, V9, P1237, DOI [10.1039/c5ee03718b, 10.1039/C5EE03718B]
[5]  
Corona A, 2018, GREEN CHEM, V20, P3857, DOI [10.1039/c8gc00868j, 10.1039/C8GC00868J]
[6]   Synthetic Biology Open Language Visual (SBOL Visual) Version 2.0 [J].
Cox, Robert Sidney ;
Madsen, Curtis ;
McLaughlin, James ;
Nguyen, Tramy ;
Roehner, Nicholas ;
Bartley, Bryan ;
Bhatia, Swapnil ;
Bissell, Mike ;
Clancy, Kevin ;
Gorochowski, Thomas ;
Grunberg, Raik ;
Luna, Augustin ;
Le Novere, Nicolas ;
Pocock, Matthew ;
Sauro, Herbert ;
Sexton, John T. ;
Stan, Guy-Bart ;
Tabor, Jeffrey J. ;
Voigt, Christopher A. ;
Zundel, Zach ;
Myers, Chris ;
Beal, Jacob ;
Wipat, Anil .
JOURNAL OF INTEGRATIVE BIOINFORMATICS, 2018, 15 (01)
[7]   Refactoring the upper sugar metabolism of Pseudomonas putida for co-utilization of cellobiose, xylose, and glucose [J].
Dvorak, Pavel ;
de Lorenzo, Victor .
METABOLIC ENGINEERING, 2018, 48 :94-108
[8]   Potential Air Pollutant Emissions and Permitting Classifications for Two Biorefinery Process Designs in the United States [J].
Eberle, Annika ;
Bhatt, Arpit ;
Zhang, Yimin ;
Heath, Garvin .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2017, 51 (11) :5879-5888
[9]  
Elmore Joshua R, 2017, Metab Eng Commun, V5, P1, DOI 10.1016/j.meteno.2017.04.001
[10]   L-ARABINOSE-SENSITIVE, L-RIBULOSE 5-PHOSPHATE 4-EPIMERASE-DEFICIENT MUTANTS OF ESCHERICHIA COLI [J].
ENGLESBERG, E ;
WEINBERG, R ;
HOFFEE, P ;
HUTTENHAUER, G ;
LEE, N ;
ANDERSON, RL ;
BOYER, H .
JOURNAL OF BACTERIOLOGY, 1962, 84 (01) :137-+