Adaptive Evolution for the Improvement of Ethanol Production During Alcoholic Fermentation with the Industrial Strains of Yeast Saccharomyces Cerevisiae

被引:7
作者
Zazulya, A. [1 ]
Semkiv, M. [1 ]
Dmytruk, K. [1 ]
Sibirny, A. [1 ]
机构
[1] Natl Acad Sci Ukraine, Inst Cell Biol, UA-79005 Lvov, Ukraine
关键词
ethanol; alcoholic fermentation; Saccharomyces cerevisiae; adaptive evolution; TOLERANCE; GENE; EXPRESSION;
D O I
10.3103/S0095452720050059
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Ethanol is one of the most important biotechnological compounds widely used in medicine, pharmacology, food and fuel, cosmetology, and other fields. The main method for ethanol production is alcoholic fermentation using baker's yeastSaccharomyces cerevisiae. S. cerevisiae converts glucose into ethanol very efficiently: ethanol yield is more than 90% of the theoretical maximum. However, even a slight increase in ethanol yield in an industrial-scale alcoholic fermentation can produce an additional 100 million t of ethanol each year. In this study, the method of adaptive evolution was used to increase the production of ethanol with industrialS. cerevisiaestrains: yeast cells were exposed to long-term cultivation on the medium with high concentrations of glucose and ethanol. Most of the adapted strains obtained were characterized by increased ethanol production during alcoholic fermentation in comparison with the original strains.
引用
收藏
页码:398 / 407
页数:10
相关论文
共 30 条
[1]   Genome structure of a Saccharomyces cerevisiae strain widely used in bioethanol production [J].
Argueso, Juan Lucas ;
Carazzolle, Marcelo F. ;
Mieczkowski, Piotr A. ;
Duarte, Fabiana M. ;
Netto, Osmar V. C. ;
Missawa, Silvia K. ;
Galzerani, Felipe ;
Costa, Gustavo G. L. ;
Vidal, Ramon O. ;
Noronha, Melline F. ;
Dominska, Margaret ;
Andrietta, Maria G. S. ;
Andrietta, Silvio R. ;
Cunha, Anderson F. ;
Gomes, Luiz H. ;
Tavares, Flavio C. A. ;
Alcarde, Andre R. ;
Dietrich, Fred S. ;
McCusker, John H. ;
Petes, Thomas D. ;
Pereira, Goncalo A. G. .
GENOME RESEARCH, 2009, 19 (12) :2258-2270
[2]  
Basso L.C., 2011, Ethanol production in Brazil: the industrial process and its impact on yeast fermentation
[3]  
BEAVEN MJ, 1982, J GEN MICROBIOL, V128, P1447
[4]   Evolutionary engineering of multiple-stress resistant Saccharomyces cerevisiae [J].
Çakar, ZP ;
Seker, UOS ;
Tamerler, C ;
Sonderegger, M ;
Sauer, U .
FEMS YEAST RESEARCH, 2005, 5 (6-7) :569-578
[5]   Expression of TPS1 Gene from Saccharomycopsis fibuligera A11 in Saccharomyces sp W0 Enhances Trehalose Accumulation, Ethanol Tolerance, and Ethanol Production [J].
Cao, Tian-Shu ;
Chi, Zhe ;
Liu, Guang-Lei ;
Chi, Zhen-Ming .
MOLECULAR BIOTECHNOLOGY, 2014, 56 (01) :72-78
[6]  
Chambers P.J., 2009, NONGENETIC ENG APPRO
[7]   KINETICS OF ENZYME CHANGES IN YEAST UNDER CONDITIONS THAT CAUSE LOSS OF MITOCHONDRIA [J].
CHAPMAN, C ;
BARTLEY, W .
BIOCHEMICAL JOURNAL, 1968, 107 (04) :455-&
[8]  
Crabb WD, 1997, TRENDS BIOTECHNOL, V15, P349, DOI 10.1016/S0167-7799(97)01082-2
[9]  
de Oliva-Neto P., 2013, BRAZILIAN TECHNOLOGY
[10]  
Dmytruk K. V., 2016, Bioethanol, V2, P24