Novel hyperbolic and exponential ansatz methods to the fractional fifth-order Korteweg-de Vries equations

被引:91
作者
Park, Choonkil [1 ]
Nuruddeen, R., I [2 ]
Ali, Khalid K. [3 ]
Muhammad, Lawal [4 ]
Osman, M. S. [5 ,6 ]
Baleanu, Dumitru [7 ,8 ]
机构
[1] Hanyang Univ, Res Inst Nat Sci, Seoul 04763, South Korea
[2] Fed Univ Dutse, Fac Sci, Dept Math, Dutse, Jigawa State, Nigeria
[3] Al Azhar Univ, Fac Sci, Math Dept, Cairo, Egypt
[4] Yusuf Maitama Sule Univ, Fac Sci, Dept Math, Kano, Kano State, Nigeria
[5] Cairo Univ, Fac Sci, Dept Math, Giza 12613, Egypt
[6] Umm Alqura Univ, Fac Appl Sci, Dept Math, Mecca 21955, Saudi Arabia
[7] Cankaya Univ, Dept Math, Ogretmenler Cad 1406530, Ankara, Turkey
[8] Inst Space Sci, Bucharest, Romania
基金
新加坡国家研究基金会;
关键词
Fractional derivative; Fifth-order KdV equations; Hyperbolic wave solutions; Exponential wave solutions; Solitary wave solutions; SOLITARY WAVE SOLUTIONS; FOKAS-LENELLS EQUATION; KDV EQUATION; SOLITONS; VARIETY; PHYSICS; PLASMA;
D O I
10.1186/s13662-020-03087-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper aims to investigate the class of fifth-order Korteweg-de Vries equations by devising suitable novel hyperbolic and exponential ansatze. The class under consideration is endowed with a time-fractional order derivative defined in the conformable fractional derivative sense. We realize various solitons and solutions of these equations. The fractional behavior of the solutions is studied comprehensively by using 2D and 3D graphs. The results demonstrate that the methods mentioned here are more effective in solving problems in mathematical physics and other branches of science.
引用
收藏
页数:12
相关论文
共 61 条
[21]   Certain Generating Relations Involving the Generalized Multi-Index Bessel-Maitland Function [J].
Jain, Shilpi ;
Nieto, Juan J. ;
Singh, Gurmej ;
Choi, Junesang .
MATHEMATICAL PROBLEMS IN ENGINEERING, 2020, 2020
[22]   The role of magnetic fields for curvature effects in Josephson junction [J].
Jarmolinski, A. ;
Dobrowolski, T. .
PHYSICA B-CONDENSED MATTER, 2017, 514 :24-29
[23]   Multi-solitons of Thermophoretic Motion Equation Depicting the Wrinkle Propagation in Substrate-Supported Graphene Sheets [J].
Javid, Ahmad ;
Raza, Nauman ;
Osman, M. S. .
COMMUNICATIONS IN THEORETICAL PHYSICS, 2019, 71 (04) :362-366
[24]  
Jothimani K, 2018, J APPL NONLINEAR DYN, V7, P371, DOI DOI 10.5890/JAND.2018.12.005
[25]   Fractional Calculus involving (p, q)-Mathieu Type Series [J].
Kaur, Daljeet ;
Agarwal, Praveen ;
Rakshit, Madhuchanda ;
Chand, Mehar .
APPLIED MATHEMATICS AND NONLINEAR SCIENCES, 2020, 5 (02) :15-34
[26]  
Kaya D., 2005, Communications in Nonlinear Science and Numerical Simulation, V10, P693, DOI 10.1016/j.cnsns.2003.12.009
[27]   A new definition of fractional derivative [J].
Khalil, R. ;
Al Horani, M. ;
Yousef, A. ;
Sababheh, M. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 264 :65-70
[28]   Existence of solutions of non-autonomous fractional differential equations with integral impulse condition [J].
Kumar, Ashish ;
Chauhan, Harsh Vardhan Singh ;
Ravichandran, Chokkalingam ;
Nisar, Kottakkaran Sooppy ;
Baleanu, Dumitru .
ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
[29]  
Kumari Varsha., 2019, International Journal of Telecommunications Emerging Technologies, V5, P1, DOI DOI 10.1007/S40819-019-0710-3
[30]   Uncertainty estimation and prediction for interdisciplinary ocean dynamics [J].
Lermusiaux, Pierre F. J. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2006, 217 (01) :176-199