Novel hyperbolic and exponential ansatz methods to the fractional fifth-order Korteweg-de Vries equations

被引:91
作者
Park, Choonkil [1 ]
Nuruddeen, R., I [2 ]
Ali, Khalid K. [3 ]
Muhammad, Lawal [4 ]
Osman, M. S. [5 ,6 ]
Baleanu, Dumitru [7 ,8 ]
机构
[1] Hanyang Univ, Res Inst Nat Sci, Seoul 04763, South Korea
[2] Fed Univ Dutse, Fac Sci, Dept Math, Dutse, Jigawa State, Nigeria
[3] Al Azhar Univ, Fac Sci, Math Dept, Cairo, Egypt
[4] Yusuf Maitama Sule Univ, Fac Sci, Dept Math, Kano, Kano State, Nigeria
[5] Cairo Univ, Fac Sci, Dept Math, Giza 12613, Egypt
[6] Umm Alqura Univ, Fac Appl Sci, Dept Math, Mecca 21955, Saudi Arabia
[7] Cankaya Univ, Dept Math, Ogretmenler Cad 1406530, Ankara, Turkey
[8] Inst Space Sci, Bucharest, Romania
基金
新加坡国家研究基金会;
关键词
Fractional derivative; Fifth-order KdV equations; Hyperbolic wave solutions; Exponential wave solutions; Solitary wave solutions; SOLITARY WAVE SOLUTIONS; FOKAS-LENELLS EQUATION; KDV EQUATION; SOLITONS; VARIETY; PHYSICS; PLASMA;
D O I
10.1186/s13662-020-03087-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper aims to investigate the class of fifth-order Korteweg-de Vries equations by devising suitable novel hyperbolic and exponential ansatze. The class under consideration is endowed with a time-fractional order derivative defined in the conformable fractional derivative sense. We realize various solitons and solutions of these equations. The fractional behavior of the solutions is studied comprehensively by using 2D and 3D graphs. The results demonstrate that the methods mentioned here are more effective in solving problems in mathematical physics and other branches of science.
引用
收藏
页数:12
相关论文
共 61 条
[1]   Exact solutions of the Korteweg-de Vries equation with space and time dependent coefficients by the extended unified method [J].
Abdel-Gawad, H. I. ;
Osman, Mohamed .
INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2014, 45 (01) :1-11
[2]   On the Variational Approach for Analyzing the Stability of Solutions of Evolution Equations [J].
Abdel-Gawad, Hamdy I. ;
Osman, M. S. .
KYUNGPOOK MATHEMATICAL JOURNAL, 2013, 53 (04) :661-680
[3]  
Adomian G., 1996, INT J MATH MATH SCI, V19, DOI 10.1155/S0161171296000592
[4]   Solvability of the boundary-value problem for a linear loaded integro-differential equation in an infinite three-dimensional domain [J].
Agarwal, Praveen ;
Baltaeva, Umida ;
Alikulov, Yolqin .
CHAOS SOLITONS & FRACTALS, 2020, 140
[5]   Solutions of system of Volterra integro-differential equations using optimal homotopy asymptotic method [J].
Agarwal, Praveen ;
Akbar, Muhammad ;
Nawaz, Rashid ;
Jleli, Mohamed .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (03) :2671-2681
[6]   Solving Higher-Order Boundary and Initial Value Problems via Chebyshev-Spectral Method: Application in Elastic Foundation [J].
Agarwal, Praveen ;
Attary, Maryam ;
Maghasedi, Mohammad ;
Kumam, Poom .
SYMMETRY-BASEL, 2020, 12 (06)
[7]   Optical soliton solutions to the generalized nonautonomous nonlinear Schrodinger equations in optical fibers via the sine-Gordon expansion method [J].
Ali, Khaled K. ;
Wazwaz, Abdul-Majid ;
Osman, M. S. .
OPTIK, 2020, 208
[8]   Analytical and numerical study of the DNA dynamics arising in oscillator-chain of Peyrard-Bishop model [J].
Ali, Khalid K. ;
Cattani, Carlo ;
Gomez-Aguilar, J. F. ;
Baleanu, Dumitru ;
Osman, M. S. .
CHAOS SOLITONS & FRACTALS, 2020, 139
[9]   New optical solitary wave solutions of Fokas-Lenells equation in optical fiber via Sine-Gordon expansion method [J].
Ali, Khalid K. ;
Osman, M. S. ;
Abdel-Aty, Mahmoud .
ALEXANDRIA ENGINEERING JOURNAL, 2020, 59 (03) :1191-1196
[10]   New hyperbolic structures for the conformable time-fractional variant bussinesq equations [J].
Ali, Khalid K. ;
Nuruddeen, R. I. ;
Raslan, K. R. .
OPTICAL AND QUANTUM ELECTRONICS, 2018, 50 (02)