Existence and uniqueness of domain wall solitons in a Maxwell-Chern-Simons model

被引:4
作者
Zhang, Ruifeng [1 ,2 ]
Li, Fangfang [2 ]
机构
[1] Henan Univ, Inst Contemp Math, Kaifeng 475001, Peoples R China
[2] Henan Univ, Coll Math & Informat Sci, Kaifeng 475001, Peoples R China
关键词
VORTEX;
D O I
10.1063/1.4829668
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present some sharp existence and uniqueness theorems for the domain wall solutions of the basic governing equations of a self-dual Maxwell-Chern-Simons model. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:9
相关论文
共 22 条
[1]  
BOGOMOLNYI EB, 1976, SOV J NUCL PHYS+, V24, P449
[2]   A note on Chem-Simons solitons-A type III vortex from the wall vortex [J].
Bolognesi, S. ;
Gudnason, S. B. .
NUCLEAR PHYSICS B, 2008, 805 (1-2) :104-123
[3]   Exact kink solitons in a monopole confinement problem [J].
Chen, Shouxin ;
Li, Yijun ;
Yang, Yisong .
PHYSICAL REVIEW D, 2012, 86 (08)
[4]   Phase transition solutions in geometrically constrained magnetic domain wall models [J].
Chen, Shouxin ;
Yang, Yisong .
JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (02)
[5]  
Dunne G., 1999, HOUCHES ECOLE ETE PH, V69, P179
[6]  
Dunne G., 1995, Self-Dual Chern-Simons Theories
[7]  
Ezawa ZF, 2000, QUANTUM HALL EFFECTS, pVII
[8]   MULTIVORTEX SOLUTIONS OF THE ABELIAN CHERN-SIMONS-HIGGS THEORY [J].
HONG, JY ;
KIM, YB ;
PAC, PY .
PHYSICAL REVIEW LETTERS, 1990, 64 (19) :2230-2233
[9]   SELF-DUAL CHERN-SIMONS VORTICES [J].
JACKIW, R ;
WEINBERG, EJ .
PHYSICAL REVIEW LETTERS, 1990, 64 (19) :2234-2237
[10]   COMPOSITE-FERMION APPROACH FOR THE FRACTIONAL QUANTUM HALL-EFFECT [J].
JAIN, JK .
PHYSICAL REVIEW LETTERS, 1989, 63 (02) :199-202