Label-Embedding Bi-directional Attentive Model for Multi-label Text Classification

被引:32
作者
Liu, Naiyin [1 ]
Wang, Qianlong [1 ]
Ren, Jiangtao [1 ]
机构
[1] Sun Yat Sen Univ, Sch Data & Comp Sci, Guangdong Prov Key Lab Computat Sci, Guangzhou 510275, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Multi-label text classification; BERT; Label embedding; Bi-directional attention;
D O I
10.1007/s11063-020-10411-8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi-label text classification is a critical task in natural language processing field. As the latest language representation model, BERT obtains new state-of-the-art results in the classification task. Nevertheless, the text classification framework of BERT neglects to make full use of the token-level text representation and label embedding, since it only utilizes the final hidden state corresponding to CLS token as sequence-level text representation for classification. We assume that the finer-grained token-level text representation and label embedding contribute to classification. Consequently, in this paper, we propose a Label-Embedding Bi-directional Attentive model to improve the performance of BERT's text classification framework. In particular, we extend BERT's text classification framework with label embedding and bi-directional attention. Experimental results on the five datasets indicate that our model has notable improvements over both baselines and state-of-the-art models.
引用
收藏
页码:375 / 389
页数:15
相关论文
共 28 条
  • [1] Learning multi-label scene classification
    Boutell, MR
    Luo, JB
    Shen, XP
    Brown, CM
    [J]. PATTERN RECOGNITION, 2004, 37 (09) : 1757 - 1771
  • [2] Chen GB, 2017, IEEE IJCNN, P2377, DOI 10.1109/IJCNN.2017.7966144
  • [3] Clare A., 2001, P EUR C PRINC DAT MI, P42
  • [4] Dembczynski K., 2010, P 27 INT C MACH LEAR, P279
  • [5] Bringing Transparency Design into Practice
    Eiband, Malin
    Schneider, Hanna
    Bilandzic, Mark
    Fazekas-Con, Julian
    Haug, Mareike
    Hussmann, Heinrich
    [J]. IUI 2018: PROCEEDINGS OF THE 23RD INTERNATIONAL CONFERENCE ON INTELLIGENT USER INTERFACES, 2018, : 211 - 223
  • [6] Elisseeff A, 2002, ADV NEUR IN, V14, P681
  • [7] Gui Yaocheng, 2012, INT C ADV DAT MIN AP, P318
  • [8] Kim Y, 2014, IEEE ASME INT C ADV, P1747, DOI 10.1109/AIM.2014.6878336
  • [9] Kingma DP, 2015, C TRACK P
  • [10] Kurata G., 2016, P C N AM CHAPT ASS C, P521, DOI [DOI 10.18653/V1/N16-1063, 10.18653/v1/n16-1063]