Entangling logical qubits with lattice surgery

被引:98
作者
Erhard, Alexander [1 ]
Poulsen Nautrup, Hendrik [2 ]
Meth, Michael [1 ]
Postler, Lukas [1 ]
Stricker, Roman [1 ]
Stadler, Martin [3 ]
Negnevitsky, Vlad [3 ]
Ringbauer, Martin [1 ]
Schindler, Philipp [1 ]
Briegel, Hans J. [2 ,4 ]
Blatt, Rainer [1 ,5 ]
Friis, Nicolai [2 ,6 ]
Monz, Thomas [1 ,7 ]
机构
[1] Univ Innsbruck, Inst Expt Phys, Innsbruck, Austria
[2] Univ Innsbruck, Inst Theoret Phys, Innsbruck, Austria
[3] Swiss Fed Inst Technol, Inst Quantum Elect, Zurich, Switzerland
[4] Univ Konstanz, Fachbereich Philosophie, Constance, Germany
[5] Austrian Acad Sci, Inst Quantum Opt & Quantum Informat, Innsbruck, Austria
[6] Austrian Acad Sci, Inst Quantum Opt & Quantum Informat IQOQI Vienna, Vienna, Austria
[7] Alpine Quantum Technol GmbH, Innsbruck, Austria
基金
奥地利科学基金会;
关键词
QUANTUM ERROR-CORRECTION; REALIZATION;
D O I
10.1038/s41586-020-03079-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The development of quantum computing architectures from early designs and current noisy devices to fully fledged quantum computers hinges on achieving fault tolerance using quantum error correction(1-4). However, these correction capabilities come with an overhead for performing the necessary fault-tolerant logical operations on logical qubits (qubits that are encoded in ensembles of physical qubits and protected by error-correction codes)(5-8). One of the most resource-efficient ways to implement logical operations is lattice surgery(9-11), where groups of physical qubits, arranged on lattices, can be merged and split to realize entangling gates and teleport logical information. Here we report the experimental realization of lattice surgery between two qubits protected via a topological error-correction code in a ten-qubit ion-trap quantum information processor. In this system, we can carry out the necessary quantum non-demolition measurements through a series of local and entangling gates, as well as measurements on auxiliary qubits. In particular, we demonstrate entanglement between two logical qubits and we implement logical state teleportation between them. The demonstration of these operations-fundamental building blocks for quantum computation-through lattice surgery represents a step towards the efficient realization of fault-tolerant quantum computation. Two logical qubits are encoded in ensembles of four physical qubits through the surface code, then entangled by lattice surgery, which is a protocol for carrying out fault-tolerant operations.
引用
收藏
页码:220 / +
页数:12
相关论文
共 49 条
[1]   Repeated quantum error detection in a surface code [J].
Andersen, Christian Kraglund ;
Remm, Ants ;
Lazar, Stefania ;
Krinner, Sebastian ;
Lacroix, Nathan ;
Norris, Graham J. ;
Gabureac, Mihai ;
Eichler, Christopher ;
Wallraff, Andreas .
NATURE PHYSICS, 2020, 16 (08) :875-+
[2]   Quantum error correction beyond qubits [J].
Aoki, Takao ;
Takahashi, Go ;
Kajiya, Tadashi ;
Yoshikawa, Jun-ichi ;
Braunstein, Samuel L. ;
van Loock, Peter ;
Furusawa, Akira .
NATURE PHYSICS, 2009, 5 (08) :541-546
[3]   Superconducting quantum circuits at the surface code threshold for fault tolerance [J].
Barends, R. ;
Kelly, J. ;
Megrant, A. ;
Veitia, A. ;
Sank, D. ;
Jeffrey, E. ;
White, T. C. ;
Mutus, J. ;
Fowler, A. G. ;
Campbell, B. ;
Chen, Y. ;
Chen, Z. ;
Chiaro, B. ;
Dunsworth, A. ;
Neill, C. ;
O'Malley, P. ;
Roushan, P. ;
Vainsencher, A. ;
Wenner, J. ;
Korotkov, A. N. ;
Cleland, A. N. ;
Martinis, John M. .
NATURE, 2014, 508 (7497) :500-503
[4]   Experimental demonstration of a graph state quantum error-correction code [J].
Bell, B. A. ;
Herrera-Marti, D. A. ;
Tame, M. S. ;
Markham, D. ;
Wadsworth, W. J. ;
Rarity, J. G. .
NATURE COMMUNICATIONS, 2014, 5
[5]   Experimental implementation of a concatenated quantum error-correcting code [J].
Boulant, N ;
Viola, L ;
Fortunato, EM ;
Cory, DG .
PHYSICAL REVIEW LETTERS, 2005, 94 (13)
[6]   Universal quantum computation with ideal Clifford gates and noisy ancillas [J].
Bravyi, S ;
Kitaev, A .
PHYSICAL REVIEW A, 2005, 71 (02)
[7]   Roads towards fault-tolerant universal quantum computation (vol 549, pg 172, 2017) [J].
Campbell, Earl T. ;
Terhal, Barbara M. ;
Vuillot, Christophe .
NATURE, 2018, 559 (7713) :E6-E6
[8]   Realization of quantum error correction [J].
Chiaverini, J ;
Leibfried, D ;
Schaetz, T ;
Barrett, MD ;
Blakestad, RB ;
Britton, J ;
Itano, WM ;
Jost, JD ;
Knill, E ;
Langer, C ;
Ozeri, R ;
Wineland, DJ .
NATURE, 2004, 432 (7017) :602-605
[9]   Deterministic teleportation of a quantum gate between two logical qubits [J].
Chou, Kevin S. ;
Blumoff, Jacob Z. ;
Wang, Christopher S. ;
Reinhold, Philip C. ;
Axline, Christopher J. ;
Gao, Yvonne Y. ;
Frunzio, L. ;
Devoret, M. H. ;
Jiang, Liang ;
Schoelkopf, R. J. .
NATURE, 2018, 561 (7723) :368-+
[10]   Topological quantum memory [J].
Dennis, E ;
Kitaev, A ;
Landahl, A ;
Preskill, J .
JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (09) :4452-4505